GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
GMX-RMSF(1) GROMACS GMX-RMSF(1)

gmx-rmsf - Calculate atomic fluctuations

gmx rmsf [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
         [-q [<.pdb>]] [-oq [<.pdb>]] [-ox [<.pdb>]] [-o [<.xvg>]]
         [-od [<.xvg>]] [-oc [<.xvg>]] [-dir [<.log>]] [-b <time>]
         [-e <time>] [-dt <time>] [-[no]w] [-xvg <enum>] [-[no]res]
         [-[no]aniso] [-[no]fit]


gmx rmsf computes the root mean square fluctuation (RMSF, i.e. standard deviation) of atomic positions in the trajectory (supplied with -f) after (optionally) fitting to a reference frame (supplied with -s).

With option -oq the RMSF values are converted to B-factor values, which are written to a .pdb file. By default, the coordinates in this output file are taken from the structure file provided with -s,although you can also use coordinates read from a different .pdb fileprovided with -q. There is very little error checking, so in this caseit is your responsibility to make sure all atoms in the structure fileand .pdb file correspond exactly to each other.

Option -ox writes the B-factors to a file with the average coordinates in the trajectory.

With the option -od the root mean square deviation with respect to the reference structure is calculated.

With the option -aniso, gmx rmsf will compute anisotropic temperature factors and then it will also output average coordinates and a .pdb file with ANISOU records (corresponding to the -oq or -ox option). Please note that the U values are orientation-dependent, so before comparison with experimental data you should verify that you fit to the experimental coordinates.

When a .pdb input file is passed to the program and the -aniso flag is set a correlation plot of the Uij will be created, if any anisotropic temperature factors are present in the .pdb file.

With option -dir the average MSF (3x3) matrix is diagonalized. This shows the directions in which the atoms fluctuate the most and the least.

Options to specify input files:
-f [<.xtc/.trr/…>] (traj.xtc)
Trajectory: xtc trr cpt gro g96 pdb tng
-s [<.tpr/.gro/…>] (topol.tpr)
Structure+mass(db): tpr gro g96 pdb brk ent
-n [<.ndx>] (index.ndx) (Optional)
Index file
-q [<.pdb>] (eiwit.pdb) (Optional)
Protein data bank file

Options to specify output files:

-oq [<.pdb>] (bfac.pdb) (Optional)
Protein data bank file
-ox [<.pdb>] (xaver.pdb) (Optional)
Protein data bank file
-o [<.xvg>] (rmsf.xvg)
xvgr/xmgr file
-od [<.xvg>] (rmsdev.xvg) (Optional)
xvgr/xmgr file
-oc [<.xvg>] (correl.xvg) (Optional)
xvgr/xmgr file
-dir [<.log>] (rmsf.log) (Optional)
Log file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)
-e <time> (0)
Time of last frame to read from trajectory (default unit ps)
-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)
-[no]w (no)
View output .xvg, .xpm, .eps and .pdb files
-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none
-[no]res (no)
Calculate averages for each residue
-[no]aniso (no)
Compute anisotropic temperature factors
-[no]fit (yes)
Do a least squares superposition before computing RMSF. Without this you must make sure that the reference structure and the trajectory match.

gmx(1)

More information about GROMACS is available at <http://www.gromacs.org/>.

2022, GROMACS development team
January 14, 2022 2021.5

Search for    or go to Top of page |  Section 1 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.