

f file  
inputfile file  
Read input from file before reading from standard input. This option makes it possible to work interactively, after reading a program fragment that defines the system of differential equations.  
p prec precision prec When printing numerical results, use prec significant digits (the default is 6). If this option is given, the print format will be scientific notation. t title Print a title line at the head of the output, naming the variables in each column. If this option is given, the print format will be scientific notation.
The following options specify the numerical integration scheme. Only one of the three basic options R, A, E may be specified. The default is R (RungeKuttaFehlberg).
R [stepsize] rungekutta [stepsize] Use a fifthorder RungeKuttaFehlberg algorithm, with an adaptive stepsize unless a constant stepsize is specified. When a constant stepsize is specified and no error analysis is requested, then a classical fourthorder RungeKutta scheme is used. A [stepsize] adamsmoulton [stepsize] Use a fourthorder AdamsMoulton predictorcorrector scheme, with an adaptive stepsize unless a constant stepsize, stepsize, is specified. The RungeKuttaFehlberg algorithm is used to get past ‘bad’ points (if any). E [stepsize] euler [stepsize] Use a ‘quick and dirty’ Euler scheme, with a constant stepsize. The default value of stepsize is 0.1. Not recommended for serious applications. The error bound options r and e (see below) may not be used if E is specified. h hmin [hmax] stepsizebound hmin [hmax] Use a lower bound hmin on the stepsize. The numerical scheme will not let the stepsize go below hmin. The default is to allow the stepsize to shrink to the machine limit, i.e., the minimum nonzero doubleprecision floating point number. The optional argument hmax, if included, specifies a maximum value for the stepsize. It is useful in preventing the numerical routine from skipping quickly over an interesting region.
r rmax [rmin] relativeerrorbound rmax [rmin] The r option sets an upper bound on the relative singlestep error. If the r option is used, the relative singlestep error in any dependent variable will never exceed rmax (the default for which is 10^9). If this should occur, the solution will be abandoned and an error message will be printed. If the stepsize is not constant, the stepsize will be decreased ‘adaptively’, so that the upper bound on the singlestep error is not violated. Thus, choosing a smaller upper bound on the singlestep error will cause smaller stepsizes to be chosen. A lower bound rmin may optionally be specified, to suggest when the stepsize should be increased (the default for rmin is rmax/1000). e emax [emin] absoluteerrorbound emax [emin] Similar to r, but bounds the absolute rather than the relative singlestep error. s suppresserrorbound Suppress the ceiling on singlestep error, allowing ode to continue even if this ceiling is exceeded. This may result in large numerical errors.
help Print a list of commandline options, and exit. version Print the version number of ode and the plotting utilities package, and exit.
Mostly selfexplanatory. The biggest exception is ‘syntax error’, meaning there is a grammatical error. Language error messages are of the form
ode: nnn: message...where ‘nnn’ is the number of the input line containing the error. If the f option is used, the phrase "(file)" follows the ‘nnn’ for errors encountered inside the file. Subsequently, when ode begins reading the standard input, line numbers start over from 1.
No effort is made to recover successfully from syntactic errors in the input. However, there is a meager effort to resynchronize so more than one error can be found in one scan.
Runtime errors elicit a message describing the problem, and the solution is abandoned.
The program
y’ = y
y = 1
print t, y
step 0, 1solves an initial value problem whose solution is y=e^t. When ode runs this program, it will write two columns of numbers to standard output. Each line will show the value of the independent variable t, and the variable y, as t is stepped from 0 to 1.
A more sophisticated example would be
sine’ = cosine
cosine’ = sine
sine = 0
cosine = 1
print t, sine
step 0, 2*PIThis program solves an initial value problem for a system of two differential equations. The initial value problem turns out to define the sine and cosine functions. The program steps the system over a full period.
ode was written by Nicholas B. Tufillaro (nbt@reed.edu), and slightly enhanced by Robert S. Maier (rsm@math.arizona.edu) to merge it into the GNU plotting utilities.
"The GNU Plotting Utilities Manual".
Email bug reports to buggnuutils@gnu.org.
FSF  ODE (1)  Dec 1998 
Visit the GSP FreeBSD Man Page Interface.
Output converted with manServer 1.07.