GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages


Manual Reference Pages  -  COMPLEX (3)

NAME

Complex - Complex numbers.

CONTENTS

Module
Documentation

Module

Module Complex

Documentation

Module Complex
: sig end

Complex numbers.

This module provides arithmetic operations on complex numbers. Complex numbers are represented by their real and imaginary parts (cartesian representation). Each part is represented by a double-precision floating-point number (type float ).

type t = {
re : float ;
im : float ;
}

The type of complex numbers. re is the real part and im the imaginary part.

val zero : t

The complex number 0 .

val one : t

The complex number 1 .

val i : t

The complex number i .

val neg : t -> t

Unary negation.

val conj : t -> t

Conjugate: given the complex x + i.y , returns x - i.y .

val add : t -> t -> t

Addition

val sub : t -> t -> t

Subtraction

val mul : t -> t -> t

Multiplication

val inv : t -> t

Multiplicative inverse ( 1/z ).

val div : t -> t -> t

Division

val sqrt : t -> t

Square root. The result x + i.y is such that x > 0 or x = 0 and y >= 0 . This function has a discontinuity along the negative real axis.

val norm2 : t -> float

Norm squared: given x + i.y , returns x^2 + y^2 .

val norm : t -> float

Norm: given x + i.y , returns sqrt(x^2 + y^2) .

val arg : t -> float

Argument. The argument of a complex number is the angle in the complex plane between the positive real axis and a line passing through zero and the number. This angle ranges from -pi to pi . This function has a discontinuity along the negative real axis.

val polar : float -> float -> t

polar norm arg returns the complex having norm norm and argument arg .

val exp : t -> t

Exponentiation. exp z returns e to the z power.

val log : t -> t

Natural logarithm (in base e ).

val pow : t -> t -> t

Power function. pow z1 z2 returns z1 to the z2 power.

Search for    or go to Top of page |  Section 3 |  Main Index


OCamldoc COMPLEX (3) 2016-03-17

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with manServer 1.07.