Quick Navigator

 Search Site Miscellaneous Server Agreement Year 2038 Credits

# Manual Reference Pages  -  MATH::GSL::POLY (3)

.ds Aq ’

### NAME

Math::GSL::Poly - Solve and evaluate polynomials

### SYNOPSIS

```

use Math::GSL::Poly qw/:all/;
my (\$a,\$b,\$c) = (1,6,9);
my (\$x0, \$x1) = (0,0);
my \$num_roots = gsl_poly_solve_quadratic( \$a, \$b, \$c, \\$x0, \\$x1);
print "\${a}*x**2 + \${b}*x + \$c contains \$num_roots roots which are \$x0 and \$x1. \n";

```

### DESCRIPTION

Here is a list of all the functions included in this module :
o gsl_poly_eval(@values, \$length, \$x)

This function evaluates a polynomial with real coefficients for the real variable \$x. \$length is the number of elements inside @values. The function returns a complex number.

o gsl_poly_complex_eval(@values, \$length, \$z)

This function evaluates a polynomial with real coefficients for the complex variable \$z. \$length is the number of elements inside @valuesi. The function returns a complex number.

o gsl_complex_poly_complex_eval(@values, \$length, \$z)

This function evaluates a polynomial with real coefficients for the complex variable \$z. \$length is the number of elements inside @values. \$length is the number of elements inside @values. The function returns a complex number.

o gsl_poly_dd_init
o gsl_poly_dd_eval
o gsl_poly_dd_taylor
o gsl_poly_solve_quadratic( \$a, \$b, \$c, \\$x0, \\$x1)

Find the real roots of the quadratic equation \$a*x**2+\$b*x+\$c = 0, return the number of real root (either zero, one or two) and the real roots are returned by \$x0, \$x1 and \$x2 which are deferenced.

o gsl_poly_solve_cubic(\$a, \$b, \$c, \\$x0, \\$x1, \\$x2)

find the real roots of the cubic equation x**3+\$a*x**2+\$b*x+\$c = 0, return the number of real root (either one or three) and the real roots are returned by \$x0, \$x1 and \$x2 which are deferenced.

o gsl_poly_complex_solve_cubic
o gsl_poly_complex_workspace_alloc(\$n)

This function allocates space for a gsl_poly_complex_workspace struct and a workspace suitable for solving a polynomial with \$n coefficients using the routine gsl_poly_complex_solve.

o gsl_poly_complex_workspace_free(\$w)

This function frees all the memory associated with the workspace \$w.

o gsl_poly_complex_solve()
For more informations on the functions, we refer you to the GSL offcial documentation: <http://www.gnu.org/software/gsl/manual/html_node/>

### AUTHORS

Jonathan Duke Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>