GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages


Manual Reference Pages  -  MATH::INTERSECTION::STRAIGHTLINE (3)

.ds Aq ’

NAME

Math::Intersection::StraightLine - Calculate intersection point for two lines

CONTENTS

VERSION

version 0.05

SYNOPSIS



  use Math::Intersection::StraightLine;
  use Data::Dumper;
  my $finder = Math::Intersection::StraightLine->new();

  # one intersection point
  my $vector_a = [[20,60],[-40,0]];
  my $vector_b = [[50,80],[0,50]];
  my $result = $finder->vectors($vector_a,$vector_b);
  print Dumper($result);

  # no intersection point
  my $point_a = [[20,60],[30,10]];
  my $point_b = [[50,80],[50,75]];
  $result = $finder->point_limited($point_a,$point_b);
  print Dumper($result);



DESCRIPTION

This module calculates the intersection point of two straight lines (if one exists). It returns 0, if no intersection point exists. If the lines have an intersection point, the coordinates of the point are the returnvalue. If the given lines have infinite intersection points, -1 is returned. Math::Intersection::StraightLine can handle four types of input:

    functions

Often straight lines are given in functions of that sort: y = 9x + 3

    vectors

the vector assignment of the line



  (10)     +     lambda(30)
  (20)                 (50)



    points

The straight lines are described with two vectors to points on the line



  X1 = (10)             X2 = (40)
       (20)                  (70)



    point_limited

If the module should test, if an intersection point of two parts exists



  X1 = (10)             X2 = (40)
       (20)                  (70)



The following example should clarify the difference between points and point_limited:



  $line_a = [[20,60],[30,10]];
  $line_b = [[50,80],[50,75]];
  $result = $finder->points($line_a,$line_b);

  $line_a_part = [[20,60],[30,10]];
  $line_b_part = [[50,80],[50,75]];
  $result = $finder->point_limited($line_a_part,$line_b_part);



The first example returns the intersection point 50/-90, the second returns 0 because $line_a_part is just a part of $line_a and has no intersection point with the part of line b.

In the first example, the lines are changed to the vectors of the lines.

EXAMPLES



  $vector_a = [[20,60],[30,10]];
  $vector_b = [[50,80],[60,30]];
  $result = $finder->point_limited($vector_a,$vector_b);
  ok($result == 0,parallel lines(diagonal));

  $vector_a = [[20,60],[20,10]];
  $vector_b = [[60,80],[20,10]];
  $result = $finder->vectors($vector_a,$vector_b);
  ok($result == -1,overlapping vectors);

  $vector_a = [[20,60],[30,10]];
  $vector_b = [[50,80],[50,75]];
  $result = $finder->points($vector_a,$vector_b);
  ok($result->[0] == 50 && $result->[1] == -90,Lines with one intersection point);

  # test y=9x+5 and y=-3x-2
  my $function_one = [9,5];
  my $function_two = [-3,-2];
  $result = $finder->functions($function_one,$function_two);



MISC

Note! The coordinates for the intersection point can be imprecise!



  # test y=9x+5 and y=-3x-2
  my $function_one = [9,5];
  my $function_two = [-3,-2];
  $result = $finder->functions($function_one,$function_two);



returns



  $VAR1 = [
          -0.583333333333333, # this is imprecise
          -0.25
          ];



OTHER METHODS

    new

returns a new object of Math::Intersection::StraightLine

AUTHOR

Renee Baecker <reneeb@cpan.org>

COPYRIGHT AND LICENSE

This software is Copyright (c) 2015 by Renee Baecker.

This is free software, licensed under:



  The Artistic License 2.0 (GPL Compatible)



Search for    or go to Top of page |  Section 3 |  Main Index


perl v5.20.3 MATH::INTERSECTION::STRAIGHTLINE (3) 2015-02-25

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with manServer 1.07.