GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages


Manual Reference Pages  -  SC_LEBEDEVLAIKOVINTEGRATOR (3)

NAME

sc::LebedevLaikovIntegrator - An implementation of a Lebedev angular integrator.

CONTENTS

Synopsis

SYNOPSIS

#include <integrator.h>

Inherits sc::AngularIntegrator.

    Public Member Functions

    LebedevLaikovIntegrator (const Ref< KeyVal > &)
Construct a LebedevLaikovIntegrator using the given KeyVal input.     LebedevLaikovIntegrator (StateIn &)    
LebedevLaikovIntegrator (int)    
void save_data_state (StateOut &)
Save the base classes (with save_data_state) and the members in the same order that the StateIn CTOR initializes them.     int nw (void) const    
int num_angular_points (double r_value, int ir)    
double angular_point_cartesian (int iangular, double r, SCVector3 &integration_point) const    
void print (std::ostream &=ExEnv::out0()) const
Print the object.

    Protected Member Functions

    void init (int n)

    Protected Attributes

    int npoint_    
double * x_    
double * y_    
double * z_    
double * w_

    Additional Inherited Members

Detailed Description

An implementation of a Lebedev angular integrator.

It uses code written by Dr. Dmitri N. Laikov.

This can generate grids with the following numbers of points: 6, 14, 26, 38, 50, 74, 86, 110, 146, 170, 194, 230, 266, 302, 350, 386, 434, 482, 530, 590, 650, 698, 770, 830, 890, 974, 1046, 1118, 1202, 1274, 1358, 1454, 1538, 1622, 1730, 1814, 1910, 2030, 2126, 2222, 2354, 2450, 2558, 2702, 2810, 2930, 3074, 3182, 3314, 3470, 3590, 3722, 3890, 4010, 4154, 4334, 4466, 4610, 4802, 4934, 5090, 5294, 5438, 5606, and 5810.

V.I. Lebedev, and D.N. Laikov ’A quadrature formula for the sphere of the 131st
algebraic order of accuracy’ Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.

V.I. Lebedev ’A quadrature formula for the sphere of 59th algebraic
order of accuracy’ Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.

V.I. Lebedev, and A.L. Skorokhodov ’Quadrature formulas of orders 41, 47, and 53 for the sphere’ Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.

V.I. Lebedev ’Spherical quadrature formulas exact to orders 25-29’ Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.

V.I. Lebedev ’Quadratures on a sphere’ Computational Mathematics and Mathematical Physics, Vol. 16, 1976, pp. 10-24.

V.I. Lebedev "Values of the nodes and weights of ninth to seventeenth order Gauss-Markov quadrature formulae invariant under the octahedron group with inversion" Computational Mathematics and Mathematical Physics, Vol. 15, 1975, pp. 44-51.

Constructor & Destructor Documentation

sc::LebedevLaikovIntegrator::LebedevLaikovIntegrator (const Ref< KeyVal > &)

Construct a LebedevLaikovIntegrator using the given KeyVal input. The n keyword gives the number of angular points. The default is 302.

Member Function Documentation

void sc::LebedevLaikovIntegrator::save_data_state (StateOut &) [virtual]

Save the base classes (with save_data_state) and the members in the same order that the StateIn CTOR initializes them. This must be implemented by the derived class if the class has data.

Reimplemented from sc::AngularIntegrator.

Author

Generated automatically by Doxygen for MPQC from the source code.

Search for    or go to Top of page |  Section 3 |  Main Index


Version 2.3.1 SC::LEBEDEVLAIKOVINTEGRATOR (3) Sun Apr 3 2016

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with manServer 1.07.