GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages


Manual Reference Pages  -  TTY (4)

NAME

tty - general terminal interface

CONTENTS

Synopsis
Description
     Terminal Special Files
     Terminal File Operations
     Terminal File Request Descriptions
Implementation Notes
See Also

SYNOPSIS


.In sys/ioctl.h

DESCRIPTION

This section describes the interface to the terminal drivers in the system.

    Terminal Special Files

Each hardware terminal port on the system usually has a terminal special device file associated with it in the directory ‘‘/dev/’’ (for example, ‘‘/dev/tty03’’). When a user logs into the system on one of these hardware terminal ports, the system has already opened the associated device and prepared the line for normal interactive use (see getty 8.) There is also a special case of a terminal file that connects not to a hardware terminal port, but to another program on the other side. These special terminal devices are called ptys and provide the mechanism necessary to give users the same interface to the system when logging in over a network (using rlogin(1), or telnet(1) for example). Even in these cases the details of how the terminal file was opened and set up is already handled by special software in the system. Thus, users do not normally need to worry about the details of how these lines are opened or used. Also, these lines are often used for dialing out of a system (through an out-calling modem), but again the system provides programs that hide the details of accessing these terminal special files (see tip(1)).

When an interactive user logs in, the system prepares the line to behave in a certain way (called a line discipline), the particular details of which is described in stty(1) at the command level, and in termios(4) at the programming level. A user may be concerned with changing settings associated with his particular login terminal and should refer to the preceding man pages for the common cases. The remainder of this man page is concerned with describing details of using and controlling terminal devices at a low level, such as that possibly required by a program wishing to provide features similar to those provided by the system.

    Terminal File Operations

All of the following operations are invoked using the ioctl(2) system call. Refer to that man page for a description of the request and argp parameters. In addition to the ioctl requests defined here, the specific line discipline in effect will define other requests specific to it (actually termios(4) defines them as function calls, not ioctl requests.) The following section lists the available ioctl requests. The name of the request, a description of its purpose, and the typed argp parameter (if any) are listed. For example, the first entry says

and would be called on the terminal associated with file descriptor zero by the following code fragment:

        int pgrp;

        pgrp = getpgrp();         ioctl(0, TIOCSPGRP, &pgrp);

    Terminal File Request Descriptions

TIOCSETD int *ldisc
  This call is obsolete but left for compatibility. Before
.Fx 8.0 , it would change to the new line discipline pointed to by ldisc.

TIOCGETD int *ldisc
  Return the current line discipline in the integer pointed to by ldisc.
TIOCSBRK void
  Set the terminal hardware into BREAK condition.
TIOCCBRK void
  Clear the terminal hardware BREAK condition.
TIOCSDTR void
  Assert data terminal ready (DTR).
TIOCCDTR void
  Clear data terminal ready (DTR).
TIOCGPGRP int *tpgrp
  Return the current process group with which the terminal is associated in the integer pointed to by tpgrp. This is the underlying call that implements the termios(4) tcgetattr call.
TIOCSPGRP int *tpgrp
  Associate the terminal with the process group (as an integer) pointed to by tpgrp. This is the underlying call that implements the termios(4) tcsetattr call.
TIOCGETA struct termios *term
  Place the current value of the termios state associated with the device in the termios structure pointed to by term. This is the underlying call that implements the termios(4) tcgetattr call.
TIOCSETA struct termios *term
  Set the termios state associated with the device immediately. This is the underlying call that implements the termios(4) tcsetattr call with the TCSANOW option.
TIOCSETAW struct termios *term
  First wait for any output to complete, then set the termios state associated with the device. This is the underlying call that implements the termios(4) tcsetattr call with the TCSADRAIN option.
TIOCSETAF struct termios *term
  First wait for any output to complete, clear any pending input, then set the termios state associated with the device. This is the underlying call that implements the termios(4) tcsetattr call with the TCSAFLUSH option.
TIOCOUTQ int *num
  Place the current number of characters in the output queue in the integer pointed to by num.
TIOCSTI char *cp
  Simulate typed input. Pretend as if the terminal received the character pointed to by cp.
TIOCNOTTY void
  This call is obsolete but left for compatibility. In the past, when a process that did not have a controlling terminal (see The Controlling Terminal in termios(4)) first opened a terminal device, it acquired that terminal as its controlling terminal. For some programs this was a hazard as they did not want a controlling terminal in the first place, and this provided a mechanism to disassociate the controlling terminal from the calling process. It must be called by opening the file /dev/tty and calling TIOCNOTTY on that file descriptor.

The current system does not allocate a controlling terminal to a process on an open call: there is a specific ioctl called TIOCSCTTY to make a terminal the controlling terminal. In addition, a program can fork and call the setsid system call which will place the process into its own session - which has the effect of disassociating it from the controlling terminal. This is the new and preferred method for programs to lose their controlling terminal.

TIOCSTOP void
  Stop output on the terminal (like typing ^S at the keyboard).
TIOCSTART void
  Start output on the terminal (like typing ^Q at the keyboard).
TIOCSCTTY void
  Make the terminal the controlling terminal for the process (the process must not currently have a controlling terminal).
TIOCDRAIN void
  Wait until all output is drained.
TIOCEXCL void
  Set exclusive use on the terminal. No further opens are permitted except by root. Of course, this means that programs that are run by root (or setuid) will not obey the exclusive setting - which limits the usefulness of this feature.
TIOCNXCL void
  Clear exclusive use of the terminal. Further opens are permitted.
TIOCFLUSH int *what
  If the value of the int pointed to by what contains the FREAD bit as defined in
.In sys/file.h , then all characters in the input queue are cleared. If it contains the FWRITE bit, then all characters in the output queue are cleared. If the value of the integer is zero, then it behaves as if both the FREAD and FWRITE bits were set (i.e., clears both queues).
TIOCGWINSZ struct winsize *ws
  Put the window size information associated with the terminal in the winsize structure pointed to by ws. The window size structure contains the number of rows and columns (and pixels if appropriate) of the devices attached to the terminal. It is set by user software and is the means by which most full-screen oriented programs determine the screen size. The winsize structure is defined in
.In sys/ioctl.h .
TIOCSWINSZ struct winsize *ws
  Set the window size associated with the terminal to be the value in the winsize structure pointed to by ws (see above).
TIOCCONS int *on
  If on points to a non-zero integer, redirect kernel console output (kernel printf’s) to this terminal. If on points to a zero integer, redirect kernel console output back to the normal console. This is usually used on workstations to redirect kernel messages to a particular window.
TIOCMSET int *state
  The integer pointed to by state contains bits that correspond to modem state. Following is a list of defined variables and the modem state they represent:

TIOCM_LE Line Enable.
TIOCM_DTR
  Data Terminal Ready.
TIOCM_RTS
  Request To Send.
TIOCM_ST Secondary Transmit.
TIOCM_SR Secondary Receive.
TIOCM_CTS
  Clear To Send.
TIOCM_CAR
  Carrier Detect.
TIOCM_CD Carrier Detect (synonym).
TIOCM_RNG
  Ring Indication.
TIOCM_RI Ring Indication (synonym).
TIOCM_DSR
  Data Set Ready.

This call sets the terminal modem state to that represented by state. Not all terminals may support this.
TIOCMGET int *state
  Return the current state of the terminal modem lines as represented above in the integer pointed to by state.
TIOCMBIS int *state
  The bits in the integer pointed to by state represent modem state as described above, however the state is OR-ed in with the current state.
TIOCMBIC int *state
  The bits in the integer pointed to by state represent modem state as described above, however each bit which is on in state is cleared in the terminal.

IMPLEMENTATION NOTES

The total number of input and output bytes through all terminal devices are available via the kern.tk_nin and kern.tk_nout read-only sysctl(8) variables.

SEE ALSO

stty(1), ioctl(2), ng_tty(4), pty(4), termios(4), getty(8)
Search for    or go to Top of page |  Section 4 |  Main Index


Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with manServer 1.07.