GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages


Manual Reference Pages  -  AL (5)

NAME

al - Alliance logical format

[Include document man1/alc_origin.1]

CONTENTS

Description
Examples
     Example 1
     Example 2
See Also

DESCRIPTION

The .al format is the ALLIANCE format for the logical view of a cell. We give below the BNF description of the format :

file ::= version header connectors instances transistors signals crosstalk_capacitances end_of_file

version ::= ’V ALLIANCE : ’ version_number

header ::= ’H ’ name ’,’ file_type ’,’ date /// name : name of the figure /// date : saving file date

connectors ::= { connector }

connector ::= ’C ’ name ’,’ connector_direction ’,’ connector_type ’,’ net_num [list_of_physical_node]

list_of_physical_node ::= { ’,’ node_num }

instances ::= { instance connectors } /// An instance is followed by his connectors

instance ::= ’I ’ model_name ’,’ instance_name

transistors ::= { transistor }

transistor ::= ’T’ type ’,’ lenght ’,’ width ’,’ drain ’,’ grid ’,’ source ’,’ bulk ’,’ xs ’,’ xd ’,’ ps ’,’ pd ’,’ x ’,’ y [ ’,’ node_drain ’,’ node_grid ’,’ node_source ’,’ node_bulk ] ’,’ trname /// drain : number of the net connected to the drain /// grid : number of the net connected to the grid /// source : number of the net connected to the source /// bulk : number of the net connected to the bulk /// xs, xd : To compute respectivly the source and /// drain area /// ps, pd : perimeter of the source and drain /// x, y : coordinate of the transistor in a layout /// node_drain : number of the node connected to the drain /// node_grid : number of the node connected to the grid /// node_source : number of the node connected to the source /// node_bulk : number of the node connected to the bulk

signals ::= { signal }

signal := sig_index [ { resistance } ] [ { capacitance } ]

sig_index ::= ’S ’ net_num ’,’ signal_type [ list_of_signal_name ]

list_of_signal_name ::= { ’,’ signal_name }

resistance := ’R ’ layer ’,’ node1 ’,’ node2 ’,’ resi ’,’ capa ’,’ x ’,’ y ’,’ dx ’,’ dy

capacitance := ’Q ’ capa

/// Each resistance is describe as a resistor beetwen two nodes /// connected to the ground with capacitor with a value of capa/2. /// Capacitance is the entire capacitance of the net to ground.

crosstalk_capacitances ::= { crosstalk_capacitance }

crosstalk_capacitance ::= K capa ’,’ sig1 ’,’ node1 ’,’ sig2 ’,’ node2

end_of_file ::= ’EOF’

version_number ::= number

file_type ::= ’L’

date ::= day ’/’ month ’/’ year

connector_direction ::= ’IN’ | ’OUT’ | ’INOUT’ | ’UNKNOWN’ | ’TRISTATE’ | ’TRANSCV’ /// in : input /// out : output /// inout : input and output /// unknown : no information is available /// tristate : tristate output /// transcv : tristate output and input

connector_type ::= ’EXTERNAL’ | ’INTERNAL’

net_num ::= number

node_num ::= number

model_name ::= name

instance_name ::= name

type ::= ’N’ | ’P’

lenght ::= float

width ::= float

drain ::= net_num

grid ::= net_num

source ::= net_num

bulk ::= net_num

node1 ::= node_num

node2 ::= node_num

sig1 ::= net_num

sig2 ::= net_num

xs ::= float

xd ::= float

ps ::= float

pd ::= float

x ::= float

y ::= float

dx ::= float

dy ::= float

trname :: name

layer ::= ’X’ | ’PY’ | ’A1’ | ’A2’ | ’CY’ | ’CN’ | ’CP’ | ’CV’ | ’CW’ | ’CA’ | ’RE’ signal_type ::= ’EXTERNAL’ | ’INTERNAL’

capa ::= float

resi ::= float

signal_name ::= name

number ::= { ’0’ | ’1’| ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’| ’8’ | ’9’ }

float ::= number [ ’.’ number ]

name ::= word

EXAMPLES

    Example 1

This example is the representation of a nand whith two input, extracted with Lynx at transistor level.

V ALLIANCE : 6
H na2_y,L,29/ 3/99
C vss,UNKNOWN,EXTERNAL,2,1,9
C vdd,UNKNOWN,EXTERNAL,1,9,13
C i1,UNKNOWN,EXTERNAL,6,1,8
C i0,UNKNOWN,EXTERNAL,5,2,8
C f,UNKNOWN,EXTERNAL,3,1,11
T P,1,12,1,5,3,1,2,2,28,28,17,32.5,4,3,7,3,tr_00004
T P,1,12,3,6,1,1,2,2,28,28,11,32.5,7,7,1,2,tr_00003
T N,1,12,3,5,4,2,2,2,28,28,17,12.5,3,1,1,8,tr_00002
T N,1,12,4,6,2,2,2,2,28,28,11,12.5,1,2,2,5,tr_00001
S 6,EXTERNAL,i1
Q 0.020455
W 4,3,CV,0,0,7.2,17.6,0,0
W 6,5,CV,0,0,6.4,22.4,0,0
W 5,8,A2,0.4,0.00408,6.4,22.4,1.6,13.6
W 1,5,A2,0.6,0.006,6.4,2.4,1.6,20
W 3,6,A1,0.3,0.00168,6.4,17.6,1.6,4.8
W 4,7,PY,500,0.00315,8.8,17.6,0.8,8.4
W 2,4,PY,450,0.00285,8.8,10,0.8,7.6
S 5,EXTERNAL,i0
Q 0.020455
W 5,4,CV,0,0,15.2,17.6,0,0
W 7,6,CV,0,0,16,22.4,0,0
W 6,8,A2,0.4,0.00408,16,22.4,1.6,13.6
W 2,6,A2,0.6,0.006,16,2.4,1.6,20
W 4,7,A1,0.3,0.00168,16,17.6,1.6,4.8
W 5,3,PY,500,0.00315,13.6,17.6,0.8,8.4
W 1,5,PY,450,0.00285,13.6,10,0.8,7.6
S 4,INTERNAL
Q 0
S 3,EXTERNAL,f
Q 0.021985
W 3,4,CV,0,0,16,10.4,0,0
W 6,5,CV,0,0,11.2,17.6,0,0
W 8,7,CV,0,0,11.2,23.2,0,0
W 9,7,CV,0,0,11.2,28,0,0
W 5,11,A2,0.55,0.00552,11.2,17.6,1.6,18.4
W 1,5,A2,0.45,0.00456,11.2,2.4,1.6,15.2
W 10,9,A1,0.2,0.00126,11.2,24.4,1.6,3.6
W 8,10,A1,0,0.00042,11.2,23.2,1.6,1.2
W 6,8,A1,0.7,0.00161,11.2,17.6,0.8,5.6
W 2,6,A1,0.9,0.00207,11.2,10.4,0.8,7.2
W 2,4,A1,0.6,0.00138,11.2,10.4,4.8,0.8
S 2,EXTERNAL,vss
Q 0.0245
W 4,3,CV,0,0,6.4,1.6,0,0
W 7,6,CV,0,0,11.2,1.6,0,0
W 11,10,CV,0,0,16,1.6,0,0
W 3,2,CV,0,0,6.4,6.4,0,0
W 12,2,CV,0,0,6.4,10.4,0,0
W 3,12,A1,0.4,0.00224,6.4,4,1.6,6.4
W 10,9,A1,0,0.00174,16,4,2.4,6.4
W 6,10,A1,0,0.00348,11.2,4,4.8,6.4
W 3,6,A1,0,0.00348,6.4,4,4.8,6.4
W 1,3,A1,0,0.00174,4,4,2.4,6.4
S 1,EXTERNAL,vdd
Q 0.02846
W 5,1,CV,0,0,6.4,26.4,0,0
W 6,4,CV,0,0,16,26.4,0,0
W 7,1,CV,0,0,6.4,29.6,0,0
W 8,4,CV,0,0,16,29.6,0,0
W 14,10,CV,0,0,6.4,36,0,0
W 15,11,CV,0,0,11.2,36,0,0
W 16,12,CV,0,0,16,36,0,0
W 7,10,A1,0.3,0.00168,6.4,29.6,1.6,4.8
W 5,7,A1,0.2,0.00112,6.4,26.4,1.6,3.2
W 8,12,A1,0.3,0.00168,16,29.6,1.6,4.8
W 6,8,A1,0.2,0.00112,16,26.4,1.6,3.2
W 12,13,A1,0,0.00174,16,34.4,2.4,6.4
W 9,10,A1,0,0.00174,4,34.4,2.4,6.4
W 11,12,A1,0,0.00348,11.2,36,4.8,6.4
W 10,11,A1,0,0.00348,6.4,36,4.8,6.4
K 0.00213,1,1,2,1
K 0.00454,5,6,2,1
K 0.00199,6,8,2,1
EOF

    Example 2

This example is a xor designed with three cells.

V ALLIANCE : 6
H gxor,L,29/ 3/99
C vss,UNKNOWN,EXTERNAL,4,1,2,9,10
C vdd,UNKNOWN,EXTERNAL,6,1,2,10,3
C s,UNKNOWN,EXTERNAL,8,2
C b,UNKNOWN,EXTERNAL,5,5
C a,UNKNOWN,EXTERNAL,3,1
I ndrvp_y,auxsc3
C vss,UNKNOWN,INTERNAL,4,8,9
C vdd,UNKNOWN,INTERNAL,6,9,10
C i,UNKNOWN,INTERNAL,5,4,9
C f,UNKNOWN,INTERNAL,7,8,12
I mx2_y,s
C vss,UNKNOWN,INTERNAL,4,4,8
C vdd,UNKNOWN,INTERNAL,6,5,9
C t,UNKNOWN,INTERNAL,8,1,3
C l1,UNKNOWN,INTERNAL,7,1,11
C l0,UNKNOWN,INTERNAL,2,4,8
C i1,UNKNOWN,INTERNAL,3,11,13
C i0,UNKNOWN,INTERNAL,5,1,8
I ndrvp_y,auxsc1
C vss,UNKNOWN,INTERNAL,4,2,3
C vdd,UNKNOWN,INTERNAL,6,2,4
C i,UNKNOWN,INTERNAL,3,10,12
C f,UNKNOWN,INTERNAL,2,1,7
S 8,EXTERNAL,s
Q 0.0072
W 2,1,A2,0.55,0.00528,79.2,0,1.6,17.6
S 7,INTERNAL,auxsc3
Q 0.02142
W 3,2,CV,0,0,64.8,8.8,0,0
W 5,4,CV,0,0,74.4,8.8,0,0
W 7,6,CV,0,0,74.4,12.8,0,0
W 10,9,CV,0,0,88.8,12.8,0,0
W 9,8,A2,0.15,0.00144,88.8,12.8,1.6,4.8
W 6,10,A1,1.8,0.00414,74.4,12.8,14.4,0.8
W 4,7,A2,0.1,0.0012,74.4,8.8,1.6,4
W 2,1,A2,0.25,0.00264,64.8,8.8,1.6,8.8
W 3,5,A1,1.2,0.00276,64.8,8.8,9.6,0.8
S 6,EXTERNAL,vdd
Q 0.05453
W 7,6,CV,0,0,37.6,48,0,0
W 8,6,CV,0,0,37.6,51.2,0,0
W 6,5,A1,0.1,0.00754,37.6,49.6,10.4,6.4
W 4,6,A1,0,0.0029,33.6,49.6,4,6.4
W 8,3,A2,0.05,0.00203,37.6,51.2,3.2,5.6
W 7,8,A2,0.05,0.00116,37.6,48,3.2,3.2
W 1,7,A2,0.75,0.0174,37.6,0,3.2,48
S 5,EXTERNAL,b
Q 0.02922
W 3,2,CV,0,0,50.4,4.8,0,0
W 7,6,CV,0,0,98.4,4.8,0,0
W 6,4,A2,0.4,0.00384,98.4,4.8,1.6,12.8
W 5,6,A2,0.15,0.00144,98.4,0,1.6,4.8
W 2,1,A2,0.4,0.00384,50.4,4.8,1.6,12.8
W 3,7,A1,6,0.0138,50.4,4.8,48,0.8
S 4,EXTERNAL,vss
Q 0.05453
W 6,5,CV,0,0,44,17.6,0,0
W 6,7,CV,0,0,44,20.8,0,0
W 7,10,A2,0.55,0.01305,44,20.8,3.2,36
W 1,5,A2,0.25,0.00638,44,0,3.2,17.6
W 5,7,A2,0.05,0.00116,44,17.6,3.2,3.2
W 6,4,A1,0,0.0029,44,19.2,4,6.4
W 3,6,A1,0.1,0.00754,33.6,19.2,10.4,6.4
S 3,EXTERNAL,a
Q 0.03282
W 3,2,CV,0,0,16.8,8.8,0,0
W 5,4,CV,0,0,60,8.8,0,0
W 7,6,CV,0,0,60,12.8,0,0
W 9,8,CV,0,0,69.6,12.8,0,0
W 8,11,A2,0.15,0.00144,69.6,12.8,1.6,4.8
W 6,9,A1,1.2,0.00276,60,12.8,9.6,0.8
W 4,7,A2,0.1,0.0012,60,8.8,1.6,4
W 2,10,A2,0.25,0.00264,16.8,8.8,1.6,8.8
W 1,2,A2,0.25,0.00264,16.8,0,1.6,8.8
W 3,5,A1,5.4,0.01242,16.8,8.8,43.2,0.8
S 2,INTERNAL,auxsc1
Q 0.0225
W 3,2,CV,0,0,7.2,12.8,0,0
W 6,5,CV,0,0,55.2,12.8,0,0
W 5,4,A2,0.15,0.00144,55.2,12.8,1.6,4.8
W 2,1,A2,0.15,0.00144,7.2,12.8,1.6,4.8
W 3,6,A1,6,0.0138,7.2,12.8,48,0.8
S 1,INTERNAL,implicit
Q 0
EOF

SEE ALSO

mbk(3)

[Include document man1/alc_bug_report.1]

Search for    or go to Top of page |  Section 5 |  Main Index


ASIM/LIP6 AL (5) October 1, 1997 Release 5.0

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with manServer 1.07.