GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages


Manual Reference Pages  -  PCLACP3 (l)

NAME

PCLACP3 - i an auxiliary routine that copies from a global parallel array into a local replicated array or vise versa

CONTENTS

Synopsis
Purpose
Arguments
Further Details

SYNOPSIS

SUBROUTINE PCLACP3( M, I, A, DESCA, B, LDB, II, JJ, REV )
    INTEGER I, II, JJ, LDB, M, REV
    INTEGER DESCA( * )
    COMPLEX A( * ), B( LDB, * )

PURPOSE

PCLACP3 is an auxiliary routine that copies from a global parallel array into a local replicated array or vise versa. Notice that the entire submatrix that is copied gets placed on one node or
more. The receiving node can be specified precisely, or all nodes
can receive, or just one row or column of nodes.

Notes
=====

Each global data object is described by an associated description vector. This vector stores the information required to establish the mapping between an object element and its corresponding process and memory location.

Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array".

NOTATION STORED IN EXPLANATION
--------------- -------------- -------------------------------------- DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
DTYPE_A = 1.
CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
the BLACS process grid A is distribu-
ted over. The context itself is glo-
bal, but the handle (the integer
value) may vary.
M_A (global) DESCA( M_ ) The number of rows in the global
array A.
N_A (global) DESCA( N_ ) The number of columns in the global
array A.
MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
the rows of the array.
NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
the columns of the array.
RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the
first column of the array A is
distributed.
LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
array. LLD_A >= MAX(1,LOCr(M_A)).

Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension p x q.
LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process column.
Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row.
The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC:
LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by:
LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A

ARGUMENTS

M (global input) INTEGER
  M is the order of the square submatrix that is copied. M >= 0. Unchanged on exit
I (global input) INTEGER
  A(I,I) is the global location that the copying starts from. Unchanged on exit.
A (global input/output) COMPLEX array, dimension
  (DESCA(LLD_),*) On entry, the parallel matrix to be copied into or from. On exit, if REV=1, the copied data. Unchanged on exit if REV=0.
DESCA (global and local input) INTEGER array of dimension DLEN_.
  The array descriptor for the distributed matrix A.
B (local input/output) COMPLEX array of size (LDB,M)
  If REV=0, this is the global portion of the array A(I:I+M-1,I:I+M-1). If REV=1, this is the unchanged on exit.
LDB (local input) INTEGER
  The leading dimension of B.
II (global input) INTEGER
  By using REV 0 & 1, data can be sent out and returned again. If REV=0, then II is destination row index for the node(s) receiving the replicated B. If II>=0,JJ>=0, then node (II,JJ) receives the data If II=-1,JJ>=0, then all rows in column JJ receive the data If II>=0,JJ=-1, then all cols in row II receive the data If II=-1,JJ=-1, then all nodes receive the data If REV<>0, then II is the source row index for the node(s) sending the replicated B.
JJ (global input) INTEGER
  Similar description as II above
REV (global input) INTEGER
  Use REV = 0 to send global A into locally replicated B (on node (II,JJ)). Use REV <> 0 to send locally replicated B from node (II,JJ) to its owner (which changes depending on its location in A) into the global A.

FURTHER DETAILS

Implemented by: M. Fahey, May 28, 1999

Search for    or go to Top of page |  Section l |  Main Index


ScaLAPACK version 1.7 PCLACP3 (l) 13 August 2001

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with manServer 1.07.