

SUBROUTINE PCLASET(  UPLO, M, N, ALPHA, BETA, A, IA, JA, DESCA ) 
CHARACTER UPLO  
INTEGER IA, JA, M, N  
COMPLEX ALPHA, BETA  
INTEGER DESCA( * )  
COMPLEX A( * )  
PCLASET initializes an MbyN distributed matrix sub( A ) denoting A(IA:IA+M1,JA:JA+N1) to BETA on the diagonal and ALPHA on the offdiagonals. Notes
=====Each global data object is described by an associated description vector. This vector stores the information required to establish the mapping between an object element and its corresponding process and memory location.
Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array".
NOTATION STORED IN EXPLANATION
   DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
DTYPE_A = 1.
CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
the BLACS process grid A is distribu
ted over. The context itself is glo
bal, but the handle (the integer
value) may vary.
M_A (global) DESCA( M_ ) The number of rows in the global
array A.
N_A (global) DESCA( N_ ) The number of columns in the global
array A.
MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
the rows of the array.
NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
the columns of the array.
RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the
first column of the array A is
distributed.
LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
array. LLD_A >= MAX(1,LOCr(M_A)).Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension p x q.
LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process column.
Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row.
The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC:
LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by:
LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
UPLO (global input) CHARACTER Specifies the part of the distributed matrix sub( A ) to be set:
= ’U’: Upper triangular part is set; the strictly lower triangular part of sub( A ) is not changed; = ’L’: Lower triangular part is set; the strictly upper triangular part of sub( A ) is not changed; Otherwise: All of the matrix sub( A ) is set.M (global input) INTEGER The number of rows to be operated on i.e the number of rows of the distributed submatrix sub( A ). M >= 0. N (global input) INTEGER The number of columns to be operated on i.e the number of columns of the distributed submatrix sub( A ). N >= 0. ALPHA (global input) COMPLEX The constant to which the offdiagonal elements are to be set. BETA (global input) COMPLEX The constant to which the diagonal elements are to be set. A (local output) COMPLEX pointer into the local memory to an array of dimension (LLD_A,LOCc(JA+N1)). This array contains the local pieces of the distributed matrix sub( A ) to be set. On exit, the leading MbyN submatrix sub( A ) is set as follows: if UPLO = ’U’, A(IA+i1,JA+j1) = ALPHA, 1<=i<=j1, 1<=j<=N, if UPLO = ’L’, A(IA+i1,JA+j1) = ALPHA, j+1<=i<=M, 1<=j<=N, otherwise, A(IA+i1,JA+j1) = ALPHA, 1<=i<=M, 1<=j<=N, IA+i.NE.JA+j, and, for all UPLO, A(IA+i1,JA+i1) = BETA, 1<=i<=min(M,N).
IA (global input) INTEGER The row index in the global array A indicating the first row of sub( A ). JA (global input) INTEGER The column index in the global array A indicating the first column of sub( A ). DESCA (global and local input) INTEGER array of dimension DLEN_. The array descriptor for the distributed matrix A.
ScaLAPACK version 1.7  PCLASET (l)  13 August 2001 
Visit the GSP FreeBSD Man Page Interface.
Output converted with manServer 1.07.