

SUBROUTINE PZLACGV(  N, X, IX, JX, DESCX, INCX ) 
INTEGER INCX, IX, JX, N  
INTEGER DESCX( * )  
COMPLEX*16 X( * )  
PZLACGV conjugates a complex vector of length N, sub( X ), where sub( X ) denotes X(IX,JX:JX+N1) if INCX = DESCX( M_ ) and X(IX:IX+N1,JX) if INCX = 1, and Notes ===== Each global data object is described by an associated description vector. This vector stores the information required to establish the mapping between an object element and its corresponding process and memory location.Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array".
NOTATION STORED IN EXPLANATION
   DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
DTYPE_A = 1.
CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
the BLACS process grid A is distribu
ted over. The context itself is glo
bal, but the handle (the integer
value) may vary.
M_A (global) DESCA( M_ ) The number of rows in the global
array A.
N_A (global) DESCA( N_ ) The number of columns in the global
array A.
MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
the rows of the array.
NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
the columns of the array.
RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the
first column of the array A is
distributed.
LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
array. LLD_A >= MAX(1,LOCr(M_A)).Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension p x q.
LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process column.
Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row.
The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC:
LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by:
LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_ABecause vectors may be viewed as a subclass of matrices, a distributed vector is considered to be a distributed matrix.
N (global input) INTEGER The length of the distributed vector sub( X ). X (local input/local output) COMPLEX*16 pointer into the local memory to an array of dimension (LLD_X,*). On entry the vector to be conjugated x( i ) = X(IX+(JX1)*M_X +(i1)*INCX ), 1 <= i <= N. On exit the conjugated vector. IX (global input) INTEGER The row index in the global array X indicating the first row of sub( X ). JX (global input) INTEGER The column index in the global array X indicating the first column of sub( X ). DESCX (global and local input) INTEGER array of dimension DLEN_. The array descriptor for the distributed matrix X. INCX (global input) INTEGER The global increment for the elements of X. Only two values of INCX are supported in this version, namely 1 and M_X. INCX must not be zero.
ScaLAPACK version 1.7  PZLACGV (l)  13 August 2001 
Visit the GSP FreeBSD Man Page Interface.
Output converted with manServer 1.07.