GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
SRC/DEPRECATED/zgegs.f(3) LAPACK SRC/DEPRECATED/zgegs.f(3)

SRC/DEPRECATED/zgegs.f


subroutine zgegs (jobvsl, jobvsr, n, a, lda, b, ldb, alpha, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, rwork, info)
ZGEGS computes the eigenvalues, Schur form, and, optionally, the left and or/right Schur vectors of a complex matrix pair (A,B)

ZGEGS computes the eigenvalues, Schur form, and, optionally, the left and or/right Schur vectors of a complex matrix pair (A,B)

Purpose:


This routine is deprecated and has been replaced by routine ZGGES.
ZGEGS computes the eigenvalues, Schur form, and, optionally, the
left and or/right Schur vectors of a complex matrix pair (A,B).
Given two square matrices A and B, the generalized Schur
factorization has the form
A = Q*S*Z**H, B = Q*T*Z**H
where Q and Z are unitary matrices and S and T are upper triangular.
The columns of Q are the left Schur vectors
and the columns of Z are the right Schur vectors.
If only the eigenvalues of (A,B) are needed, the driver routine
ZGEGV should be used instead. See ZGEGV for a description of the
eigenvalues of the generalized nonsymmetric eigenvalue problem
(GNEP).

Parameters

JOBVSL


JOBVSL is CHARACTER*1
= 'N': do not compute the left Schur vectors;
= 'V': compute the left Schur vectors (returned in VSL).

JOBVSR


JOBVSR is CHARACTER*1
= 'N': do not compute the right Schur vectors;
= 'V': compute the right Schur vectors (returned in VSR).

N


N is INTEGER
The order of the matrices A, B, VSL, and VSR. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA, N)
On entry, the matrix A.
On exit, the upper triangular matrix S from the generalized
Schur factorization.

LDA


LDA is INTEGER
The leading dimension of A. LDA >= max(1,N).

B


B is COMPLEX*16 array, dimension (LDB, N)
On entry, the matrix B.
On exit, the upper triangular matrix T from the generalized
Schur factorization.

LDB


LDB is INTEGER
The leading dimension of B. LDB >= max(1,N).

ALPHA


ALPHA is COMPLEX*16 array, dimension (N)
The complex scalars alpha that define the eigenvalues of
GNEP. ALPHA(j) = S(j,j), the diagonal element of the Schur
form of A.

BETA


BETA is COMPLEX*16 array, dimension (N)
The non-negative real scalars beta that define the
eigenvalues of GNEP. BETA(j) = T(j,j), the diagonal element
of the triangular factor T.
Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
represent the j-th eigenvalue of the matrix pair (A,B), in
one of the forms lambda = alpha/beta or mu = beta/alpha.
Since either lambda or mu may overflow, they should not,
in general, be computed.

VSL


VSL is COMPLEX*16 array, dimension (LDVSL,N)
If JOBVSL = 'V', the matrix of left Schur vectors Q.
Not referenced if JOBVSL = 'N'.

LDVSL


LDVSL is INTEGER
The leading dimension of the matrix VSL. LDVSL >= 1, and
if JOBVSL = 'V', LDVSL >= N.

VSR


VSR is COMPLEX*16 array, dimension (LDVSR,N)
If JOBVSR = 'V', the matrix of right Schur vectors Z.
Not referenced if JOBVSR = 'N'.

LDVSR


LDVSR is INTEGER
The leading dimension of the matrix VSR. LDVSR >= 1, and
if JOBVSR = 'V', LDVSR >= N.

WORK


WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK. LWORK >= max(1,2*N).
For good performance, LWORK must generally be larger.
To compute the optimal value of LWORK, call ILAENV to get
blocksizes (for ZGEQRF, ZUNMQR, and CUNGQR.) Then compute:
NB -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and CUNGQR;
the optimal LWORK is N*(NB+1).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

RWORK


RWORK is DOUBLE PRECISION array, dimension (3*N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
=1,...,N:
The QZ iteration failed. (A,B) are not in Schur
form, but ALPHA(j) and BETA(j) should be correct for
j=INFO+1,...,N.
> N: errors that usually indicate LAPACK problems:
=N+1: error return from ZGGBAL
=N+2: error return from ZGEQRF
=N+3: error return from ZUNMQR
=N+4: error return from ZUNGQR
=N+5: error return from ZGGHRD
=N+6: error return from ZHGEQZ (other than failed
iteration)
=N+7: error return from ZGGBAK (computing VSL)
=N+8: error return from ZGGBAK (computing VSR)
=N+9: error return from ZLASCL (various places)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 222 of file zgegs.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:30 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.