
Majordomo: How I Manage 17 Mailing Lists
Without Answering "-request" Mail

D. Brent Chapman – Great Circle Associates

ABSTRACT

Majordomo is a perl program written to handle routine administration of Internet
mailing lists with as little human intervention as possible. Modeled after the Listserv
implementations common on BITNET (but unfortunately rare on the Internet), it automates
the administration of mailing lists by allowing users to perform the most frequent operations
("subscribe" and "unsubscribe") themselves, while allowing the list owners to either
"approve" each of these operations (or initiate them on behalf of a user), or merely monitor
them as they are automatically approved. It also automates response to certain other
common queries from users, such as "what lists are served by this Majordomo server?",
"what is the topic of list ’foobar’?", "who is already on list ’foobar’?", and "which lists
managed by this Majordomo server am I already on?".

Majordomo allows individual list owners to manage their own lists (subscribe and
unsubscribe users, and change the general information message for their list) without any
action by the overall Majordomo owner. It serves both "open" lists (where users can add
themselves to the list, and the list owner is merely informed of this action) and "closed" lists
(where a subscription request from a user generates an approval request from the Majordomo
server to the list owner, who can then either approve or ignore the request).

Finally, all interactions with Majordomo by both users and list owners take place totally
by electronic mail, so users and list owners do not require login access (nor even direct
TCP/IP connectivity) to the machine Majordomo is running on, and no special client software
is required.

Introduction

Anyone who has ever managed a significant
electronic mailing list by hand (which is, on the
Internet at least, the usual method) knows how much
time it takes to process the endless requests from
users of the form "please subscribe me to your list",
"please unsubscribe me from your list", "please tell
me about your list", "please tell me if I’m already on
your list", and so forth. It’s a time-consuming, bor-
ing, repetitive task; just the sort of thing that’s a per-
fect candidate to be automated.

When SAGE (the System Administrators Guild,
a USENIX Special Technical Group) was formed,
the founding members decided to establish over a
dozen mailing lists for various purposes (one for the
board of directors, one for each of the 16 initial
working groups, one the chairs of all the working
groups, and so forth). The USENIX Association
volunteered the USENIX.ORG machine as a home
for these mailing lists, but didn’t have the staff
resources to set up and operate the mailing lists. I
volunteered to act as Postmaster for SAGE, and han-
dle all the mailing lists. As an independent consul-
tant, my schedule is rather erratic, and I don’t have a
company paying my salary while I pursue volunteer
work like this; thus, I wished to automate the job as
much as possible, so that I could provide a high
level of service to the users (including fast

turnaround on their requests) while spending as little
time as possible in the long run on administrivia. A
BITNET-style Listserv seemed to be an appropriate
solution, so I started investigating alternatives.

Defining the Problem

The first step was to identify just what func-
tionality I desired. First and foremost, I wanted
something that would handle routine "subscribe" and
"unsubscribe" requests automatically, with no human
intervention required for routine requests (though I
wanted to give the owner of a given list the option
of passing judgement on all subscription requests, if
they so desired). Second, I wanted something that
could easily handle many mailing lists simultane-
ously; I had 17 to begin with, and I was sure that
more would be added as time passed. Third, I
wanted something that could automatically handle
other user requests (such as "what lists are avail-
able?", "please tell me about list ’foobar’", and
"which of your lists am I on?") that, while less com-
mon than "subscribe" and "unsubscribe", still occur
relatively frequently.

The first thing I did was look around for suit-
able publicly available software that might already
exist, or that might be easily adapted to my needs.
Searches of the common Internet software archives,
queries to the "Archie" anonymous FTP indexing

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 135

Majordomo: How I Manage 17 Mailing Lists ... Chapman

service, and email to certain acquaintances who I
thought might know of such software produced two
results: an implementation of the BITNET Listserv
written in C for UNIX (from the comp.sources.unix
archives), and several different programs named
"listserv" written in perl.

I first examined the BITNET Listserv C pack-
age from the comp.sources.unix newsgroup archives.
It looked like it would do most of what I wanted,
but it also looked like it did a lot of things I didn’t
really care about (there appeared to be features for
coordinating activities between multiple Listserv
servers on different machines, for instance). It
appeared to be rather short on documentation, and
what documentation there was seemed to assume
that the reader was already familiar with BITNET
Listserv implementation and operation. All in all, it
looked like it would be a real headache for me to
install, configure, and maintain, since I’m not fami-
liar with BITNET Listserv implementation and
operation.

Command Description
Subscribe yourself (or address, if specified) to listsubscribe list [address]

Unsubscribe yourself (or address, if specified) from listunsubscribe list [address]

Find out which lists you (or address, if specified) are onwhich [address]

Show the members of listwho list

Show the general introductory information for listinfo list

Show the lists handled by this Majordomo serverlists

Retrieve a help message, explaining these commandshelp

Stop processing commands (useful if your mailer automatically adds
a signature to your messages)

end

Figure 1: Majordomo user commands

The next things I looked at were several perl
scripts from a variety of sources that were sup-
posedly Listserv-like servers. Some of these scripts
were pointed out to me by folks on the net who
knew I was looking for such a thing, and I found
others by searching through Archie for "listserv".
Unfortunately, these various scripts all turned out to
be more what I’d call "archive servers" than "list-
serv" implementations; they were written to auto-
mate retrieval of files from archives via email, for
folks who don’t have access to anonymous FTP.
When I examined one of these scripts that claimed
to support "subscribe" and "unsubscribe" requests, I
found that what it did with such requests was for-
ward them by email to the mailing list owner for
manual processing; this was exactly what I was try-
ing to avoid!

In the end, I decided to implement my own
version of Listserv, so that I could get exactly what I
wanted. The name for my software was provided by
Eliot Lear of Silicon Graphics, Inc.; he suggested

"majordomo", which the dictionary defines as "a per-
son who speaks, makes arrangements, or takes
charge for another", and which seems perfectly
appropriate given the nature of the software.

Designing a Solution

My first step in designing a solution was to
decide on the general approach I was going to take.
First, I decided that all routine interactions with
Majordomo would take place asynchronously via
email. Second, since the software was going to
spend most of its time parsing emailed instructions,
processing text files (the actual mailing lists) accord-
ing to those instructions, and generating emailed
responses to users, I wanted to write it in a language
well-suited for that task; perl seemed the natural
choice.

In the Majordomo world model, there are three
types of people: users (without any special
privileges), mailing list owners, and the owner of the
Majordomo server itself. Interactions with users
take place strictly by email; the user mails a set of
requests to Majordomo, and Majordomo processes
those requests and sends back appropriate replies.
Interactions with list owners also take place strictly
by email, but a list owner can do a few things that a
normal user can’t; the commands that are restricted
to list owners are protected with a per-list password
(though it’s very weak password protection, since the
password is passed in the clear through the email;
the goal is not absolute security, but to avoid people
making a nuisance of themselves by abusing the
Majordomo server). The Majordomo owner is the
person responsible for maintaining the Majordomo
server itself, and for performing tasks such as creat-
ing new mailing lists to be served by Majordomo.

The software needs to support multiple mailing
lists, each owned by different individuals. Some
owners wish to approve all "subscribe" requests for
their list (a "closed" list), while other owners wish
routine "subscribe" requests to be approved automat-
ically (an "open" list), with notification to the owner.

136 1992 LISA VI – October 19-23, 1992 – Long Beach, CA

Chapman Majordomo: How I Manage 17 Mailing Lists ...

Routine "unsubscribe" requests are approved
automatically, with notification to the list owner, for
both open and closed lists. Owners have a way (the
"approve" command) to approve all "subscribe"
requests on closed lists, as well as non-routine "sub-
scribe" and "unsubscribe" requests on open lists. A
"non-routine request" is one that affects a different
address than the request appears to originate from;
for instance, a request from "joe@foobar.com" to
subscribe or unsubscribe "alice@foobar.com" is a
non-routine request. All non-routine requests (on
both open and closed lists) are forwarded to the list
owner for approval.

Majordomo accepts the commands shown in
Figure 1 from any user. In addition, Majordomo
accepts the password-protected commands shown in
Figure 2, which are for use by list owners to manage
their list. Authentication is based solely on
knowledge of the password for the list in question;
no attempt is made to check that the address of the
person issuing the command is the same as the
address of the list owner. As mentioned earlier, the
goal of the minimal security in Majordomo is to
prevent anti-social people from making a nuisance of
themselves; I don’t make any claims that the secu-
rity is particularly strong.

A side benefit of authentication by password is
that the owner can manage their list from any of
their accounts; they don’t have to always use the
same account on a certain machine, for instance.
The "owner" of a given list could in fact be an alias
for multiple people, any of whom could approve
requests for the list. Because the owner of a list is
always notified of successful "subscribe" and "unsub-
scribe" requests concerning their list, even if the
owner initiated those requests on behalf of a user,
multiple owners would automatically be kept up to
date on each other’s actions concerning the list.

Command Description
Approve a non-routine subscribe or unsubscribe
request concerning list

approve password {subscribe | unsubscribe} list address

Provide a new "info" message for list, to be sent in
response to "info" and "subscribe" requests

newinfo list password

Change the password for listpasswd list old-password new-password

Figure 2: Majordomo list owner commands

Note that the "approve" command is simply
"approve password" prepended to a "subscribe" or
"unsubscribe" request. This simplifies command
processing; in handling an "approve" message, the
command processor checks that the password is
correct for the list being acted on, then recursively
processes the "subscribe" or "unsubscribe" command
with a flag set that tells the processor that the opera-
tion is pre-approved and should simply be carried
out, even if it is a non-routine request. The right

way to think about "approve", by the way, is that the
list owner is telling Majordomo "I approve this com-
mand; just do it!", not "I approve this request you
sent me earlier". Majordomo doesn’t keep track of
outstanding requests; when an "approve" command
comes in from a list owner, Majordomo doesn’t
check to see that the owner is approving something
Majordomo had previously requested, or anything
like that. A list owner can thus issue "approve"
commands on behalf of a user (to drop a dead
account from the list, for instance) without any prior
action by the user.

An important distinction that many people
misunderstand is the difference between managing a
mailing list, and managing the traffic on a mailing
list. Managing a mailing list (which is what Major-
domo does) means exactly that: managing a list of
names. Managing the traffic on a mailing list
(which is commonly called "moderating" the mailing
list) means either automatically or manually review-
ing each message that is submitted for the list, then
either forwarding it to the list (perhaps after header
or content editing, depending on the nature of the
mailing list) or discarding it. The changes made to
messages before forwarding them to such a
moderated mailing list can be as simple as rewriting
the headers of the message to arrange for errors to
come back to the list owner, or as complex as com-
pletely rewriting the body of the message to preserve
the anonymity of the originator. Editorial policies
(such as only forwarding messages to the list that
were sent by a member of the list, and refusing mes-
sages from "outsiders") might also be enforced
automatically or manually. All of this is outside the
scope of Majordomo; all Majordomo does is main-
tain the file containing the list of email addresses.
How that list is used (whether it is simply included
as an alias in the /etc/aliases file, or used by a
forwarding that enforces a "no messages from non-
members policy" as described above, or whatever) is
not something for Majordomo to determine.

Implementing the Proposal

Once I had more or less decided what I wanted
to implement and how, I sat down to the nitty-gritty
details of getting it done. It took about 2 days of
concentrated work to write the core of the program,
followed by a test installation and another couple of

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 137

Majordomo: How I Manage 17 Mailing Lists ... Chapman

days of on-again, off-again testing and enhancement.
All told, I spent about 20 hours on the project, and
ended up with about than 600 lines of perl code that
implemented almost all the features listed above (I
didn’t implement "which" and "unsubscribe" until a
couple of weeks later). This was the version that
was initially installed on USENIX.ORG to run the
SAGE mailing lists in late June, 1992. Over the
next couple of weeks, I spent another 20 or so hours
implementing the remaining commands, fixing minor
bugs, and generally cleaning up the program. I’ve
continued to make minor enhancements since then.
Today, the program stands at 815 lines of perl code,
not including libraries.

While writing Majordomo, I made extensive
use of other people’s work that had been previously
released on the net, including software to process
mail headers and perform file locking. From one of
the perl archives on the Internet, I obtained a perl
package called "mailstuff.pl" (written by Gene Spaf-
ford) which parses RFC822 mail headers into perl
associative arrays for easy processing; with a few
minor modifications, it was just what I needed to
handle all the mail header processing for Major-
domo.

$whereami = "GreatCircle.COM";
$whoami = "Majordomo@$whereami";
$whoami_owner = "Majordomo-Owner@$whereami";
$homedir = "/usr/local/majordomo";
$listdir = "$homedir/Lists";
$log = "$homedir/Log";

Figure 3: Sample /etc/majordomo.cf file

I needed a safe way for Majordomo to lock
files while editing them (adding or deleting users on
a mailing list, or changing the "info" file for a list,
for instance), to prevent multiple Majordomo
processes from tripping each other up. I was fami-
liar with Erik Fair’s "shlock" program, which is pro-
vided in the NNTP distribution as a file locking
mechanism for use in shell scripts, and knew it
would provide the kind of locking I wanted; porting
the code from a stand-alone C program to a 150-line
perl package was a relatively simple matter. The
biggest problem I encountered was that the C code
used "goto" to break out of nested command logic
when exceptions occurred; unlike some, I don’t dog-
maticly object to "goto" on general principles, but
this particular usage of "goto" simply isn’t supported
in perl.

Other complications included addressing and
appropriate case sensitivity. It was slightly tricky to
get all the "To:" and "From:" addresses correct on
mail generated by Majordomo, so that replies to
commands and requests for approval from Major-
domo went to the right place, and could themselves
be replied to with appropriate results. It was also

tricky to get certain things to be case sensitive (pass-
words, for example), and other things to be case
insensitive (email addresses, mailing list names, and
commands, for instance); further, some case insensi-
tive items (such as mailing list names) need to be
smashed to lower case before use, while others (such
as email addresses) need to be preserved in mixed
case and merely compared in a case insensitive
manner.

Because it needs to edit files (the mailing lists,
the "info" files for each list, and so forth), I decided
that Majordomo needed to run setgid to a specially-
created group which would have appropriate permis-
sions on those files. Perl includes a nifty dataflow-
tracing feature (commonly known as "taintperl") that
is automatically activated when a perl script is run
setuid or setgid; this feature attempts to ensure that
the script doesn’t do anything "dangerous". The perl
on-line manual page describes this feature:

When perl is executing a setuid script, it
takes special precautions to prevent you from
falling into any obvious traps. (In some ways,
a perl script is more secure than the
corresponding C program.) Any command
line argument, environment variable, or input
is marked as "tainted", and may not be used,
directly or indirectly, in any command that
invokes a subshell, or in any command that
modifies files, directories or processes. Any
variable that is set within an expression that
has previously referenced a tainted value also
becomes tainted (even if it is logically impos-
sible for the tainted value to influence the
variable).

While this is certainly a valuable feature of perl, I
wasn’t able to get Majordomo to function because of
it. I spent many hours trying to make "taintperl"
happy before I gave up and wrote a simple C
"wrapper" program that sets the real UID and GID to
the effective UID and GID before executing the
Majordomo perl script, thus not activating the
"taintperl" feature. This is almost certainly not the
right thing to do; at some point, I need to go back
and figure out how to make Majordomo work under
"taintperl". Particularly since I’m bypassing the
"taintperl" security features, Majordomo makes a
special effort to validate user input (email addresses
and mailing list names, for instance) and ensure that
it doesn’t contain anything dangerous (a command

138 1992 LISA VI – October 19-23, 1992 – Long Beach, CA

Chapman Majordomo: How I Manage 17 Mailing Lists ...

like "|uudecode" in an email address or an abso-
lute path name like "/etc/passwd" as a mailing
list name) before using that input to interact with the
operating system (by opening files by that name, and
so forth).

The title of this paper states that I don’t answer
"-request" mail (that is, mail people send to "list-
request" with requests concerning list). While that’s
true, something has to answer "-request" mail. Mail
sent to "list-request" can’t simply be forwarded to
Majordomo for processing, since it almost certainly
doesn’t contain commands that Majordomo would
understand. A simple little perl script called
"request-recording" (abbreviated as "request-rec" in
Figure 4) answers the "-request" mail for each mail-
ing list, and sends back a message (customized to
the list in question) telling the user how to use
Majordomo to subscribe to the list, get information
about the list, or get a copy of Majordomo’s help
file; in addition, instructions are provided on how to
reach a human being, just in case.

majordomo: "|/usr/local/majordomo/wrapper /usr/local/majordomo/majordomo"
owner-majordomo: brent

open-list: :include:/usr/local/majordomo/Lists/open-list
open-list-request: "|/usr/local/majordomo/wrapper /usr/local/majordomo/request-rec open-list"
open-list-approval: joe@foobar.com
owner-open-list: joe@foobar.com

closed-list: :include:/usr/local/majordomo/Lists/closed-list
closed-list-request: "|/usr/local/majordomo/wrapper /usr/local/majordomo/request-rec closed-list"
closed-list-approval: bob@elsewhere.edu
owner-closed-list: bob@elsewhere.edu

Figure 4: Sample /etc/aliases entries

Configuring Majordomo

At startup, Majordomo reads a configuration
file (as specified by the "MAJORDOMO_CF" environ-
ment variable or on the command line, or
"/etc/majordomo.cf" by default) that provides
site-specific information, including the name of the
site, who mail from Majordomo should appear to be
from, where Majordomo’s supporting programs are
located, where the lists Majordomo manages are
located, and where Majordomo’s log is located. Fig-
ure 3 shows a sample Majordomo configuration file.
All Majordomo-managed files (the lists themselves,
and the "info" and "password" information for those
lists) are kept in a directory specified by the
"$listdir" variable in the configuration file.
Each mailing list is kept in a file in the $listdir
directory that is exactly the name of the mailing list.
Mailing list names may contain only lower case
letters, numbers, "-", and "_". The lists Majordomo
thinks it manages are the files in $listdir whose
names meet these criteria for mailing list names.
There is no specific "list of lists" in a file anywhere;

thus, creating a new list for Majordomo to manage
merely involves creating a new file with appropriate
permissions in $listdir and creating appropriate
entries in either /etc/aliases or
/usr/lib/aliases to use that file.

Several auxiliary files may be associated with
each list in $listdir. The password for list is
contained in the file "list.passwd". The descriptive
info for list (which will be returned in response to a
"info list" or "subscribe list" command) is in
"list.info". The existence of a file called
"list.closed" indicates that list is a "closed" list,
and that all "subscribe list" requests must be
approved by the list owner. Note that the names of
these auxiliary files are invalid mailing list names,
because they contain a "."; that’s how Majordomo
differentiates the mailing list files from the auxiliary
files.

Majordomo is closely tied to the
/etc/aliases or /usr/lib/aliases file. A
number of aliases are required for the Majordomo
server itself, as well as for each of the lists managed
by Majordomo. Figure 4 shows sample entries for
the /etc/aliases file on a machine using Major-
domo to run two lists ("open-list" and "closed-list").
The "-approval" alias is where Majordomo will send
requests for approval for actions concerning a list.
The "owner-" alias is not used by Majordomo, but is
used by Sendmail to notify the owner of a mailing
list of problems with that mailing list (bounced mes-
sages, and so forth; see the Sendmail documentation
for more information). The "owner-" and "-
approval" aliases could point to different people;
each could also expand to multiple people.

Using Majordomo

To use Majordomo, a user sends commands as
an email message to the address the Majordomo
server is configured to recognize (for the sample
configuration in Figure 3, the address is
"Majordomo@GreatCircle.COM"). For instance, to
find out what lists are served by
Majordomo@GreatCircle.COM, a user named
"Jane@Somewhere.ORG" might send the following

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 139

Majordomo: How I Manage 17 Mailing Lists ... Chapman

message:
From: Jane@Somewhere.ORG
To: Majordomo@GreatCircle.COM

lists

The "Subject:" line of a message, if any, is ignored
by Majordomo, so there’s no harm in leaving it out.
Jane would receive a message like this in response
to her query:
From: Majordomo@GreatCircle.COM
To: Jane@Somewhere.ORG
Subject: Majordomo results

>>>> lists
Majordomo@GreatCircle.COM serves the
following lists:

majordomo-announce
majordomo-users

Use the ’info <list>’ command to get
more information about a specific list.

Upon receiving this, Jane might wish to find out
more about each of these lists. She could send the
following request:
From: Jane@Somewhere.ORG
To: Majordomo@GreatCircle.COM

info majordomo-announce
info majordomo-users

In return, Majordomo would respond with:
From: Majordomo@GreatCircle.COM
To: Jane@Somewhere.ORG
Subject: Majordomo results

>>>> info majordomo-users
This list is for discussions (including
bug reports, enhancement reports,
and general usage tips) concerning
the Majordomo mailing list manager.
...

>>>> info majordomo-announce
This list is for announcements of new
releases of the Majordomo mailing
list manager.
...

If Jane wishes to subscribe to one of the lists (say,
the majordomo-users list), she would send the fol-
lowing request:
From: Jane@Somewhere.ORG
To: Majordomo@GreatCircle.COM

subscribe majordomo-users

In return, she would receive two messages. The first
is a standard Majordomo response:
From: Majordomo@GreatCircle.COM
To: Jane@Somewhere.ORG
Subject: Majordomo results

>>>> subscribe majordomo-users
Succeeded.

The second is "welcome" message with specific
information concerning the list (note that it also
includes the same information that an "info" com-
mand on the list would return). This message goes

to the subscribed address, not the address the request
was made from (though in this case those are the
same; since Jane didn’t specify an address to sub-
scribe, it defaulted to the address the request was
made from):
From: Majordomo@GreatCircle.COM
To: Jane@Somewhere.ORG
Subject: Welcome to majordomo-users

Welcome to the majordomo-users mailing list!

If you ever want to remove yourself
from this mailing list, send the
following command in email to
"Majordomo@GreatCircle.COM":

unsubscribe majordomo-users \
Jane@Somewhere.ORG

Here’s the general information for the
list you’ve subscribed to, in case you
don’t already have it:

This list is for discussions (including
bug reports, enhancement reports,
and general usage tips) concerning
the Majordomo mailing list manager.
...

At the same time, the owner of the list (through the
"majordomo-users-approval" alias in the
/etc/aliases file on the Majordomo machine)
would receive the following notification of a new
user:
From: Majordomo@GreatCircle.COM
To: majordomo-users-approval@GreatCircle.COM
Subject: SUBSCRIBE majordomo-users

Jane@Somewhere.ORG has been
added to majordomo-users.
No action is required on your part.

If Jane wanted to subscribe some other address to
majordomo-announce (the email address
"SysStaff@Somewhere.ORG", for instance, so that
all members of the system staff would receive
announcements concerning Majordomo), she could
submit the following request:
From: Jane@Somewhere.ORG
To: Majordomo@GreatCircle.COM

subscribe majordomo-announce \
SysStaff@Somewhere.ORG

This would cause the following message to be
returned to Jane:
From: Majordomo@GreatCircle.COM
To: Jane@Somewhere.ORG
Subject: Majordomo results

>>>> subscribe majordomo-announce \
SysStaff@Somewhere.ORG

Your request to Majordomo@GreatCircle.COM:

subscribe majordomo-announce \
SysStaff@Somewhere.ORG

has been forwarded to the owner of the
"majordomo-announce" list for approval.
This could be for any of several reasons:

You might have asked to subscribe to a
"closed" list, where all new additions

140 1992 LISA VI – October 19-23, 1992 – Long Beach, CA

Chapman Majordomo: How I Manage 17 Mailing Lists ...

must be approved by the list owner.

You might have asked to subscribe or
unsubscribe an address other than
the one that appears in the headers
of your mail message.

When the list owner approves your request, you
will be notified.

If you have any questions about the
policy of the list owner, please contact
"majordomo-announce-approval@GreatCircle.COM".

At the same time, Majordomo sends the following
message to the mailing list owner:
From: Majordomo@GreatCircle.COM
To: majordomo-announce-approval@GreatCircle.COM
Subject: APPROVE majordomo-announce

Jane@Somewhere.ORG requests that you
approve the following:

subscribe majordomo-announce \
SysStaff@Somewhere.ORG

If you approve, please send a message
such as the following back to
Majordomo@GreatCircle.COM (with the
appropriate PASSWORD filled in,
of course):

approve PASSWORD subscribe \
majordomo-announce SysStaff@Somewhere.ORG

If you disapprove, do nothing.

If the list owner sends such an "approve" command
back to Majordomo, and the password is the correct
password for the list in question, then the addition
will take place. The address being subscribed
(SysStaff@Somewhere.ORG, in this case) will
receive a standard "Welcome to majordomo-
announce" message and the list owner will receive a
standard "SUBSCRIBE" notification, as shown
above.

Such an "approve" cycle takes place if a user
attempts to subscribe or unsubscribe any address that
doesn’t match the one in the header of their mes-
sage, or if a user asks to subscribe to a "closed" list.

To find out who is on the majordomo-users list,
Jane would send the following request:
From: Jane@Somewhere.ORG
To: Majordomo@GreatCircle.COM

who majordomo-users

and would receive the following response:
From: Majordomo@GreatCircle.COM
To: Jane@Somewhere.ORG
Subject: Majordomo results

>>>> who majordomo-users
Members of list ’majordomo-users’:

brent@GreatCircle.COM (Brent Chapman)
Jane@Somewhere.ORG
Joe User <Joe@Elsewhere.GOV>
...

To find out which of the lists she’s on that are
served by a given Majordomo server, Jane would
send the following request:
From: Jane@Somewhere.ORG
To: Majordomo@GreatCircle.COM

which

Majordomo would respond with:
From: Majordomo@GreatCircle.COM
To: Jane@Somewhere.ORG
Subject: Majordomo results

>>>> which
The address ’Jane@Somewhere.ORG’ is
on the following lists served by
Majordomo@GreatCircle.COM:

majordomo-users

To unsubscribe herself from the majordomo-
users list, Jane would send a request such as:
From: Jane@Somewhere.ORG
To: Majordomo@GreatCircle.COM

unsubscribe majordomo-users \
Jane@Somewhere.ORG

To which Majordomo would respond:
From: Majordomo@GreatCircle.COM
To: Jane@Somewhere.ORG
Subject: Majordomo results

>>>> unsubscribe majordomo-users \
Jane@Somewhere.ORG

Succeeded.

The following message would also be sent to the list
owner:
From: Majordomo@GreatCircle.COM
To: majordomo-users-approval@GreatCircle.COM
Subject: UNSUBSCRIBE majordomo-users

Jane@Somewhere.ORG has unsubscribed
from majordomo-users.
No action is required on your part.

If Jane’s mailer automatically appended a sig-
nature to the end of all her outgoing messages, she
could issue the "end" command as the last command
of her messages to cause Majordomo to stop pro-
cessing at that point. In addition, she could include
blank lines or comments (anything following a ’#’
on a line is a comment, and is discarded before the
line is processed) if she wanted to.

If the owner of the "majordomo-users" list
wished to change the information file that is sent in
response to "info" and "subscribe" requests, he could
do that with a message such as:
To: Majordomo@GreatCircle.COM

newinfo majordomo-users PASSWORD
This is a revised information file
for the majordomo-users mailing list.
END

If the password used was the correct password for
the list, Majordomo would replace the existing info
file with the contents of the message to the "END"

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 141

Majordomo: How I Manage 17 Mailing Lists ... Chapman

marker (or the end of the message, if there was no
marker). A wise list owner would probably include
an "info majordomo-users" command after the
"END" marker so that he could verify that the infor-
mation update succeeded.

A list owner could also use a message like this
to change the password for their list:
To: Majordomo@GreatCircle.COM

passwd majordomo-users OLD NEW

If the old password for majordomo-users was
"OLD", then Majordomo would change the password
to "NEW". For all Majordomo list owner operations
that require passwords, knowledge of the password
for the list is the sole authentication performed on
the command. As I’ve said elsewhere in this paper,
this isn’t intended to be highly secure; it’s merely
intended to keep obnoxious people from making a
nuisance of themselves by abusing list owner com-
mands.

Note that Majordomo does not yet support con-
tinuation lines (a command line that ends with a
backslash, indicating that the command continues on
the next line) as shown above, though it is high on
the list of features to be added. Continuation lines
were used here for typesetting reasons.

Experiences with Majordomo

Majordomo is currently used to run the 17
SAGE mailing lists on USENIX.ORG, and to run
the "Majordomo-Users" and "Majordomo-Announce"
mailing lists at GreatCircle.COM (see the "Availa-
bility" section for more information about these
lists). It’s been in operation on USENIX.ORG since
late June, 1992. In the two months between then and
the time this paper was written, it has processed
almost 1800 requests, all without encountering any
major bugs or problems (though a number of minor
bugs have been found and corrected). A number of
other sites requested and received beta-test versions
of the program, but I haven’t heard back from any of
them that they’ve begun using the software yet.

While Majordomo is similar to and inspired by
Listserv, I haven’t really attempted to make it a List-
serv clone. I’ve chosen to use many of the same
commands as Listserv, but I’ve often used slightly
different syntaxes for some commands; for instance,
the Listserv syntax for "subscribe" is "subscribe list
real_name", as opposed to the Majordomo syntax of
"subscribe list [address]". This may not have been a
good idea; perhaps I should have either made the
Majordomo syntax identical to the Listserv syntax or
made it completely different. The copy of Major-
domo running on USENIX.ORG uses the email
address "Listserv", not "Majordomo"; it’s not clear if
that was a good idea, since it’s not really Listserv.

Future Work

The next major set of features I intend to add
are to support email retrieval of files through Major-
domo. I need to look at mechanisms and syntaxes
for making files and directories readable, writable,
and searchable via email. I intend to support the
notion of "open" and "closed" file directories (similar
to the "open" and "closed" mailing lists currently
implemented); only authorized people (where author-
ization might be determined by knowledge of an
appropriate password, or by membership on a mail-
ing list associated with the directory) will be able to
retrieve files from "closed" directories. I also intend
to support "writable" and "read-only" directories and
files. I’m going to consider special support
specificly for mailing list archives, to allow users to
request only messages matching certain patterns or
containing specified keywords from a given archive,
rather than forcing them to retrieve the whole
archive and do the search themselves.

At some point, I (or someone else) should go
back in and make Majordomo work under
"taintperl", so that the "wrapper" program won’t be
necessary. I firmly believe that "taintperl" is good
and valuable, and that operating under it would
improve the security of Majordomo; I just didn’t
have the time to work out all the details during my
initial implementation phase.

I’d like to add a number of minor features to
the program, including suppression of duplicate
addresses in mailing lists (but is "joe@foobar.com"
the same as "joe@workstation.foobar.com"?), recog-
nition of unambiguous command abbreviations, sup-
port for continuation lines (some mailers insist on
auto-wrapping text to fit an 80-column display; while
this is often preferable to paragraph-long lines in text
messages, it wreaks havoc with long Majordomo
commands), support for a command indicating what
return address Majordomo should use for its replies
(for use by folks whose mailers generate broken
reply addresses in the headers; this might, however,
have security implications that would need to be
carefully considered), and support for commands in
the "Subject:" line of the message. I might look at
making Majordomo more Listserv-compatible.

Availability

The package is available for anonymous FTP
on machine FTP.GreatCircle.COM, in file
"pub/majordomo.tar.Z". If you do not have
anonymous FTP access, contact me (contact infor-
mation is in the "Author Information" section,
below), and I’ll try to get a copy to you by email or
some other means.

If you install Majordomo, please add yourself
to the mailing list Majordomo-
Users@GreatCircle.COM, which is for discussions
concerning use of, problems with, and enhancements

142 1992 LISA VI – October 19-23, 1992 – Long Beach, CA

Chapman Majordomo: How I Manage 17 Mailing Lists ...

for Majordomo. Announcements of new releases of
Majordomo will be sent to Majordomo-
Announce@GreatCircle.COM. You can add yourself
to either or both lists by sending appropriate Major-
domo commands to the electronic mail alias
Majordomo@GreatCircle.COM.

Author Information

Brent Chapman is a consultant in the San Fran-
cisco Bay Area, specializing in the configuration,
operation, and networking of UNIX systems. He is
also currently Postmaster for SAGE (the USENIX
Special Technical Group focusing on system
administration issues). During the last several years,
he has been an operations manager for a financial
services company, a world-renowned corporate
research lab, a software engineering company, and a
hardware engineering company. He holds a
Bachelor of Science degree in Electrical Engineering
and Computer Science from the University of Cali-
fornia, Berkeley. He can be contacted by electronic
mail to Brent@GreatCircle.COM, by phone at +1
415 962 0841, by FAX at +1 415 962 0842, or by
U.S. Mail to Great Circle Associates, 1057 West
Dana St., Mountain View, CA 94041.

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 143

144 1992 LISA VI – October 19-23, 1992 – Long Beach, CA

