GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages


Manual Reference Pages  -  AI::CATEGORIZER::LEARNER (3)

.ds Aq ’

NAME

AI::Categorizer::Learner - Abstract Machine Learner Class

CONTENTS

SYNOPSIS



 use AI::Categorizer::Learner::NaiveBayes;  # Or other subclass

 # Here $k is an AI::Categorizer::KnowledgeSet object

 my $nb = new AI::Categorizer::Learner::NaiveBayes(...parameters...);
 $nb->train(knowledge_set => $k);
 $nb->save_state(filename);

 ... time passes ...

 $nb = AI::Categorizer::Learner::NaiveBayes->restore_state(filename);
 my $c = new AI::Categorizer::Collection::Files( path => ... );
 while (my $document = $c->next) {
   my $hypothesis = $nb->categorize($document);
   print "Best assigned category: ", $hypothesis->best_category, "\n";
   print "All assigned categories: ", join(, , $hypothesis->categories), "\n";
 }



DESCRIPTION

The AI::Categorizer::Learner class is an abstract class that will never actually be directly used in your code. Instead, you will use a subclass like AI::Categorizer::Learner::NaiveBayes which implements an actual machine learning algorithm.

The general description of the Learner interface is documented here.

METHODS

new() Creates a new Learner and returns it. Accepts the following parameters:
knowledge_set A Knowledge Set that will be used by default during the train() method.
verbose If true, the Learner will display some diagnostic output while training and categorizing documents.
train()
train(knowledge_set => $k) Trains the categorizer. This prepares it for later use in categorizing documents. The knowledge_set parameter must provide an object of the class AI::Categorizer::KnowledgeSet (or a subclass thereof), populated with lots of documents and categories. See AI::Categorizer::KnowledgeSet for the details of how to create such an object. If you provided a knowledge_set parameter to new(), specifying one here will override it.
categorize($document) Returns an AI::Categorizer::Hypothesis object representing the categorizer’s best guess about which categories the given document should be assigned to. See AI::Categorizer::Hypothesis for more details on how to use this object.
categorize_collection(collection => $collection) Categorizes every document in a collection and returns an Experiment object representing the results. Note that the Experiment does not contain knowledge of the assigned categories for every document, only a statistical summary of the results.
knowledge_set() Gets/sets the internal knowledge_set member. Note that since the knowledge set may be enormous, some Learners may throw away their knowledge set after training or after restoring state from a file.
$learner->save_state($path) Saves the Learner for later use. This method is inherited from AI::Categorizer::Storable.
$class->restore_state($path) Returns a Learner saved in a file with save_state(). This method is inherited from AI::Categorizer::Storable.

AUTHOR

Ken Williams, ken@mathforum.org

COPYRIGHT

Copyright 2000-2003 Ken Williams. All rights reserved.

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

SEE ALSO

AI::Categorizer(3)
Search for    or go to Top of page |  Section 3 |  Main Index


perl v5.20.3 AI::CATEGORIZER::LEARNER (3) 2016-04-03

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with manServer 1.07.