GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages


Manual Reference Pages  -  AI::CATEGORIZER::LEARNER::KNN (3)

.ds Aq ’

NAME

AI::Categorizer::Learner::KNN - K Nearest Neighbour Algorithm For AI::Categorizer

CONTENTS

SYNOPSIS



  use AI::Categorizer::Learner::KNN;
 
  # Here $k is an AI::Categorizer::KnowledgeSet object
 
  my $nb = new AI::Categorizer::Learner::KNN(...parameters...);
  $nb->train(knowledge_set => $k);
  $nb->save_state(filename);
 
  ... time passes ...
 
  $l = AI::Categorizer::Learner->restore_state(filename);
  my $c = new AI::Categorizer::Collection::Files( path => ... );
  while (my $document = $c->next) {
    my $hypothesis = $l->categorize($document);
    print "Best assigned category: ", $hypothesis->best_category, "\n";
    print "All assigned categories: ", join(, , $hypothesis->categories), "\n";
  }



DESCRIPTION

This is an implementation of the k-Nearest-Neighbor decision-making algorithm, applied to the task of document categorization (as defined by the AI::Categorizer module). See AI::Categorizer for a complete description of the interface.

METHODS

This class inherits from the AI::Categorizer::Learner class, so all of its methods are available unless explicitly mentioned here.

new()

Creates a new KNN Learner and returns it. In addition to the parameters accepted by the AI::Categorizer::Learner class, the KNN subclass accepts the following parameters:
threshold Sets the score threshold for category membership. The default is currently 0.1. Set the threshold lower to assign more categories per document, set it higher to assign fewer. This can be an effective way to trade of between precision and recall.
k_value Sets the k value (as in k-Nearest-Neighbor) to the given integer. This indicates how many of each document’s nearest neighbors should be considered when assigning categories. The default is 5.

threshold()

Returns the current threshold value. With an optional numeric argument, you may set the threshold.

train(knowledge_set => CW$k)

Trains the categorizer. This prepares it for later use in categorizing documents. The knowledge_set parameter must provide an object of the class AI::Categorizer::KnowledgeSet (or a subclass thereof), populated with lots of documents and categories. See AI::Categorizer::KnowledgeSet for the details of how to create such an object.

    categorize($document)

Returns an AI::Categorizer::Hypothesis object representing the categorizer’s best guess about which categories the given document should be assigned to. See AI::Categorizer::Hypothesis for more details on how to use this object.

    save_state($path)

Saves the categorizer for later use. This method is inherited from AI::Categorizer::Storable.

AUTHOR

Originally written by David Bell (<dave@student.usyd.edu.au>), October 2002.

Added to AI::Categorizer November 2002, modified, and maintained by Ken Williams (<ken@mathforum.org>).

COPYRIGHT

Copyright 2000-2003 Ken Williams. All rights reserved.

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

SEE ALSO

AI::Categorizer(3)

A re-examination of text categorization methods by Yiming Yang <http://www.cs.cmu.edu/~yiming/publications.html>

Search for    or go to Top of page |  Section 3 |  Main Index


perl v5.20.3 AI::CATEGORIZER::LEARNER::KNN (3) 2016-04-03

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with manServer 1.07.