 |
|
| |
CJPEG(1) |
FreeBSD General Commands Manual |
CJPEG(1) |
cjpeg - compress an image file to a JPEG file
cjpeg [ options ] [ filename ]
cjpeg compresses the named image file, or the standard
input if no file is named, and produces a JPEG/JFIF file on the standard
output. The currently supported input file formats are: PPM (PBMPLUS color
format), PGM (PBMPLUS grayscale format), BMP, GIF [legacy feature], and
Targa [legacy feature].
All switch names may be abbreviated; for example,
-grayscale may be written -gray or -gr. Most of the
"basic" switches can be abbreviated to as little as one letter.
Upper and lower case are equivalent (thus -BMP is the same as
-bmp). British spellings are also accepted (e.g. -greyscale),
though for brevity these are not mentioned below.
The basic switches are:
- -quality
N[,...]
- Scale quantization tables to adjust image quality. Quality is 0 (worst) to
100 (best); default is 75. (See below for more info.)
- -grayscale
- Create monochrome JPEG file from color input. By specifying
-grayscale, you'll get a smaller JPEG file that takes less time to
process.
- -rgb
- Create RGB JPEG file. Using this switch suppresses the conversion from RGB
colorspace input to the default YCbCr JPEG colorspace.
- -optimize
- Perform optimization of entropy encoding parameters. Without this, default
encoding parameters are used. -optimize usually makes the JPEG file
a little smaller, but cjpeg runs somewhat slower and needs much
more memory. Image quality and speed of decompression are unaffected by
-optimize.
- -progressive
- Create progressive JPEG file (see below). Implies -optimize unless
-arithmetic is also specified.
- -targa
- Input file is Targa format [legacy feature]. Targa files that contain an
"identification" field will not be automatically recognized by
cjpeg. For such files, you must specify -targa to make
cjpeg treat the input as Targa format. For most Targa files, you
won't need this switch.
The -quality switch lets you trade off compressed file size
against quality of the reconstructed image: the higher the quality setting,
the larger the JPEG file, and the closer the output image will be to the
original input. Normally you want to use the lowest quality setting
(smallest file) that decompresses into something visually indistinguishable
from the original image. For this purpose the quality setting should
generally be between 50 and 95 (the default is 75) for photographic images.
If you see defects at -quality 75, then go up 5 or 10 counts at a
time until you are happy with the output image. (The optimal setting will
vary from one image to another.)
-quality 100 will generate a quantization table of all 1's,
minimizing loss in the quantization step (but there is still information
loss in subsampling, as well as roundoff error.) For most images, specifying
a quality value above about 95 will increase the size of the compressed file
dramatically, and while the quality gain from these higher quality values is
measurable (using metrics such as PSNR or SSIM), it is rarely perceivable by
human vision.
In the other direction, quality values below 50 will produce very
small files of low image quality. Settings around 5 to 10 might be useful in
preparing an index of a large image library, for example. Try
-quality 2 (or so) for some amusing Cubist effects. (Note: quality
values below about 25 generate 2-byte quantization tables, which are
considered optional in the JPEG standard. cjpeg emits a warning
message when you give such a quality value, because some other JPEG programs
may be unable to decode the resulting file. Use -baseline if you need
to ensure compatibility at low quality values.)
The -quality option has been extended in this version of
cjpeg to support separate quality settings for luminance and
chrominance (or, in general, separate settings for every quantization table
slot.) The principle is the same as chrominance subsampling: since the human
eye is more sensitive to spatial changes in brightness than spatial changes
in color, the chrominance components can be quantized more than the
luminance components without incurring any visible image quality loss.
However, unlike subsampling, this feature reduces data in the frequency
domain instead of the spatial domain, which allows for more fine-grained
control. This option is useful in quality-sensitive applications, for which
the artifacts generated by subsampling may be unacceptable.
The -quality option accepts a comma-separated list of
parameters, which respectively refer to the quality levels that should be
assigned to the quantization table slots. If there are more q-table slots
than parameters, then the last parameter is replicated. Thus, if only one
quality parameter is given, this is used for both luminance and chrominance
(slots 0 and 1, respectively), preserving the legacy behavior of cjpeg v6b
and prior. More (or customized) quantization tables can be set with the
-qtables option and assigned to components with the -qslots
option (see the "wizard" switches below.)
JPEG files generated with separate luminance and chrominance
quality are fully compliant with standard JPEG decoders.
CAUTION: For this setting to be useful, be sure to pass an
argument of -sample 1x1 to cjpeg to disable chrominance
subsampling. Otherwise, the default subsampling level (2x2, AKA
"4:2:0") will be used.
The -progressive switch creates a "progressive
JPEG" file. In this type of JPEG file, the data is stored in multiple
scans of increasing quality. If the file is being transmitted over a slow
communications link, the decoder can use the first scan to display a
low-quality image very quickly, and can then improve the display with each
subsequent scan. The final image is exactly equivalent to a standard JPEG
file of the same quality setting, and the total file size is about the same
--- often a little smaller.
Switches for advanced users:
- -precision
N
- Create JPEG file with N-bit data precision. N is 2 to 16; default is 8. If
N is not 8 or 12, then -lossless must also be specified. Note that
only the PBMPLUS input file format supports data precisions other than 8.
Note also that PBMPLUS input files are silently scaled to the target data
precision, even if it is lower than the precision of the input file.
Passing an argument of -verbose to cjpeg will cause it to
print information about the precision of the input file. Caution:
only 8-bit data precision is widely implemented, so many decoders will be
unable to handle JPEG files with other data precisions.
- -precision 12 implies -optimize unless
-arithmetic is also specified.
- -lossless
psv[,Pt]
- Create a lossless JPEG file using the specified predictor selection value
(1 through 7) and optional point transform (0 through precision -
1, where precision is the JPEG data precision in bits). A point
transform value of 0 (the default) is necessary in order to create a fully
lossless JPEG file. (A non-zero point transform value right-shifts the
input samples by the specified number of bits, which is effectively a form
of lossy color quantization.) Caution: lossless JPEG is not yet
widely implemented, so many decoders will be unable to handle a lossless
JPEG file at all. In most cases, compressing and decompressing a lossless
JPEG file is considerably slower than compressing and decompressing a
lossy JPEG file, and lossless JPEG files are much larger than lossy JPEG
files. Also note that the following features will be unavailable when
compressing or decompressing a lossless JPEG file:
- - Quality/quantization table selection
- - Color space conversion (the JPEG image will use the same color space as
the input image)
- - Color quantization
- - DCT/IDCT algorithm selection
- - Smoothing
- - Downsampling/upsampling
- - IDCT scaling
- - Partial image decompression
- - Transformations using jpegtran
- Any switches used to enable or configure those features will be
ignored.
- -arithmetic
- Use arithmetic coding. Caution: arithmetic-coded JPEG is not yet
widely implemented, so many decoders will be unable to handle an
arithmetic-coded JPEG file at all.
- -dct int
- Use accurate integer DCT method (default).
- -dct fast
- Use less accurate integer DCT method [legacy feature]. When the
Independent JPEG Group's software was first released in 1991, the
compression time for a 1-megapixel JPEG image on a mainstream PC was
measured in minutes. Thus, the fast integer DCT algorithm provided
noticeable performance benefits. On modern CPUs running libjpeg-turbo,
however, the compression time for a 1-megapixel JPEG image is measured in
milliseconds, and thus the performance benefits of the fast
algorithm are much less noticeable. On modern x86/x86-64 CPUs that support
AVX2 instructions, the fast and int methods have similar
performance. On other types of CPUs, the fast method is generally
about 5-15% faster than the int method.
For quality levels of 90 and below, there should be little or
no perceptible quality difference between the two algorithms. For
quality levels above 90, however, the difference between the fast
and int methods becomes more pronounced. With quality=97, for
instance, the fast method incurs generally about a 1-3 dB loss in
PSNR relative to the int method, but this can be larger for some
images. Do not use the fast method with quality levels above 97.
The algorithm often degenerates at quality=98 and above and can actually
produce a more lossy image than if lower quality levels had been used.
Also, in libjpeg-turbo, the fast method is not fully accelerated
for quality levels above 97, so it will be slower than the int
method.
- -dct float
- Use floating-point DCT method [legacy feature]. The float method
does not produce significantly more accurate results than the int
method, and it is much slower. The float method may also give
different results on different machines due to varying roundoff behavior,
whereas the integer methods should give the same results on all
machines.
- -icc file
- Embed ICC color management profile contained in the specified file.
- -restart
N
- Emit a JPEG restart marker every N MCU rows, or every N MCUs if
"B" is attached to the number.
- In typical JPEG images, an MCU (Minimum Coded Unit) is the minimum set of
interleaved "data units" (8x8 DCT blocks if the image is lossy
or samples if the image is lossless) necessary to represent at least one
data unit per component. (For example, an MCU in an interleaved lossy JPEG
image that uses 4:2:2 subsampling consists of two luminance blocks
followed by one block for each chrominance component.) In single-component
or non-interleaved JPEG images, an MCU is the same as a data unit. An MCU
row is a row of MCUs spanning the entire width of the image.
- -restart 0 (the default) means no restart markers.
- -smooth
N
- Smooth the input image to eliminate dithering noise. N, ranging from 1 to
100, indicates the strength of smoothing. 0 (the default) means no
smoothing.
- -maxmemory
N
- Set limit for amount of memory to use in processing large images. Value is
in thousands of bytes, or millions of bytes if "M" is attached
to the number. For example, -max 4m selects 4000000 bytes. If more
space is needed, an error will occur.
- -outfile
name
- Send output image to the named file, not to standard output.
- -memdst
- Compress to memory instead of a file. This feature was implemented mainly
as a way of testing the in-memory destination manager (jpeg_mem_dest()),
but it is also useful for benchmarking, since it reduces the I/O
overhead.
- -report
- Report compression progress.
- -strict
- Treat all warnings as fatal. Enabling this option will cause the
compressor to abort if an LZW-compressed GIF input image contains
incomplete or corrupt image data.
- -verbose
- Enable debug printout. More -v's give more output. Also, version
information is printed at startup.
- -debug
- Same as -verbose.
- -version
- Print version information and exit.
The -restart option inserts extra markers that allow a JPEG
decoder to resynchronize after a transmission error. Without restart
markers, any damage to a compressed file will usually ruin the image from
the point of the error to the end of the image; with restart markers, the
damage is usually confined to the portion of the image up to the next
restart marker. Of course, the restart markers occupy extra space. We
recommend -restart 1 for images that will be transmitted across
unreliable networks such as Usenet.
The -smooth option filters the input to eliminate
fine-scale noise. This is often useful when converting dithered images to
JPEG: a moderate smoothing factor of 10 to 50 gets rid of dithering patterns
in the input file, resulting in a smaller JPEG file and a better-looking
image. Too large a smoothing factor will visibly blur the image,
however.
Switches for wizards:
- -baseline
- Force baseline-compatible quantization tables to be generated. This clamps
quantization values to 8 bits even at low quality settings. (This switch
is poorly named, since it does not ensure that the output is actually
baseline JPEG. For example, you can use -baseline and
-progressive together.)
- -qtables
file
- Use the quantization tables given in the specified text file.
- -qslots
N[,...]
- Select which quantization table to use for each color component.
- -sample
HxV[,...]
- Set JPEG sampling factors for each color component.
- -scans
file
- Use the scan script given in the specified text file.
The "wizard" switches are intended for experimentation
with JPEG. If you don't know what you are doing, don't use them.
These switches are documented further in the file wizard.txt.
This example compresses the PPM file foo.ppm with a quality factor
of 60 and saves the output as foo.jpg:
- cjpeg -quality 60 foo.ppm > foo.jpg
Color GIF files are not the ideal input for JPEG; JPEG is really
intended for compressing full-color (24-bit through 48-bit) images. In
particular, don't try to convert cartoons, line drawings, and other images
that have only a few distinct colors. GIF works great on these; JPEG does
not. If you want to convert a GIF to JPEG, you should experiment with
cjpeg's -quality and -smooth options to get a
satisfactory conversion. -smooth 10 or so is often helpful.
Avoid running an image through a series of JPEG
compression/decompression cycles. Image quality loss will accumulate; after
ten or so cycles the image may be noticeably worse than it was after one
cycle. It's best to use a lossless format while manipulating an image, then
convert to JPEG format when you are ready to file the image away.
The -optimize option to cjpeg is worth using when
you are making a "final" version for posting or archiving. It's
also a win when you are using low quality settings to make very small JPEG
files; the percentage improvement is often a lot more than it is on larger
files. (At present, -optimize mode is always selected when generating
progressive JPEG files.)
- JPEGMEM
- If this environment variable is set, its value is the default memory
limit. The value is specified as described for the -maxmemory
switch. JPEGMEM overrides the default value specified when the
program was compiled, and itself is overridden by an explicit
-maxmemory.
djpeg(1), jpegtran(1), rdjpgcom(1),
wrjpgcom(1)
ppm(5), pgm(5)
Wallace, Gregory K. "The JPEG Still Picture Compression Standard",
Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44.
Independent JPEG Group
This file was modified by The libjpeg-turbo Project to include
only information relevant to libjpeg-turbo, to wordsmith certain sections,
and to describe features not present in libjpeg.
Not all variants of BMP and Targa file formats are supported.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc.
|