GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
hpcg_kernel(1) Utility Commands hpcg_kernel(1)

hpcg_kernel - high performance conjugate gradient kernel benchmark

hpcg_kernel matrix_type solution_filename rhistory_filename [options]

This program solves the linear equation Ax = b with additive Schwarz, symmetric Gauss-Seidel preconditioned conjugate gradient solver, where the coefficient matrix A of size lmn is derived from a discretized three dimensional Poisson's equation using the twenty-seven point central difference scheme, with the coefficient matrix in the storage format specified by matrix_type and the solver specified by options. It outputs the solution to solution_filename in the extended Matrix Market format and the residual history to rhistory_filename in the PLAIN format (see Appendix of the Lis User Guide). The right-hand side vector is set such that the values of the elements of the solution are 1. The values l, m and n represent the numbers of grid points in each dimension.

The following options are supported:

The following options are supported for linear solver:
CG
BiCG
CGS
BiCGSTAB
BiCGSTAB(l)
The degree l
GPBiCG
TFQMR
Orthomin(m)
The restart value m
GMRES(m)
The restart value m
Jacobi
Gauss-Seidel
SOR
The relaxation coefficient omega (0<omega<2)
BiCGSafe
CR
BiCR
CRS
BiCRSTAB
GPBiCR
BiCRSafe
FGMRES(m)
The restart value m
IDR(s)
The restart value s
IDR(1)
MINRES
COCG
COCR

The following options are supported for preconditioner:
None
Jacobi
ILU(k)
The fill level k
SSOR
The relaxation coefficient omega (0<omega<2)
Hybrid
The linear solver
The maximum number of the iterations
The convergence criterion
The relaxation coefficient omega of the SOR (0<omega<2)
The degree l of the BiCGSTAB(l)
The restart values of the GMRES and Orthomin
I+S
The parameter alpha of I+alpha*S(m)
The parameter m of I+alpha*S(m)
SAINV
The drop criterion
SA-AMG
Select the unsymmetric version (The matrix structure must be symmetric)
The drop criterion
Crout ILU
The drop criterion
The ration of maximum fill-in
ILUT
The drop criterion
The ration of maximum fill-in
Additive Schwarz
The number of the iteration

Other Options:

The maximum number of the iterations
The convergence criterion
The display of the residual history
Save the residual history
Display the residual history
Save the residual history and output it to the standard output
The scaling
No scaling
The Jacobi scaling
The diagonal scaling
The behavior of the initial vector x_0
Given values
All values are set to 0
The number of the threads (t represents the maximum number of the threads)
The matrix storage format
The block size of the BSR and BSC formats
The precision of the linear solver
Double precision
Double-double (quadruple) precision

See Lis User Guide for full description.

The following exit values are returned:

0
The process is normally terminated
An error occurred

lis(3), lsolve(1), esolve(1), hpcg_spmvtest(1), spmvtest1(1), spmvtest2(1), spmvtest2b(1), spmvtest3(1), spmvtest3b(1), spmvtest4(1), spmvtest5(1)

http://www.ssisc.org/lis/
http://software.sandia.gov/hpcg/

14 Sep 2017 Man Page

Search for    or go to Top of page |  Section 1 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.