![]() |
![]()
| ![]() |
![]()
NAMEr.out.vtk - Converts raster maps into the VTK-ASCII format. KEYWORDSraster, export, output, VTK SYNOPSISr.out.vtk
Flags:
Parameters:
DESCRIPTIONOutputs raster maps in VTK-ASCII format. Map’s are valid raster map’s in the current mapset. output is the name of an VTK-ASCII file which will be written in the current working directory. If output is not specified then stdout is used. The module is sensitive to region settings (set with g.region). Elevation, scaling, point/celldata, vector and RGB Data are supported. If the map is in LL projection, the elevation values will automatically scaled to degrees. It is supposed that the elevation values are provided in meters. If the elevation values are in a different unit than meters, use the scale parameter to convert the units. If no elevation map is given, the user can set the height of the map by one value. Point or cell data are available. Also scaling is supported for this elevation value. The elevation value must be provided in meters. The RGB input requires three raster maps: red, green, blue - in this order. The maps must have values between 0 and 255, otherwise you will get lots of warnings and the values are set to 0. More than one RGB dataset (3 maps) is not supported. The vector input requires three raster maps: x, y, z -- defining the vector coordinates - in this order. More than one vector dataset (3 maps) is not supported. NOTESThis filter generates:
If elevation map is chosen, a polygonal grid is created with quads, but the user can choose also triangle strips or vertices. These dataformats a documented at VTK Toolkit. If the "-c" flag is used and the data should be visualised together with other data exported via *.out.vtk modules, be sure the "-c" flag was also set in these modules. But this will only work with data from the SAME location (The reference point for the coordinates transformation is based on the center point of the default region). Difference between point- and celldatar.out.vtk can export raster cells with different representations.
EXAMPLESimple Spearfish example# set region g.region n=4926970 s=4914857 w=591583 e=607793 res=50 -p # export the data r.out.vtk input=elevation.10m,slope,aspect elevation=elevation.10m output=/tmp/out.vtk # visualize in Paraview or other VTK viewer: paraview --data=/tmp/out.vtk Spearfish example with RGB data#set the region g.region n=4926990 s=4914840 w=591570 e=607800 res=30 -p # using r.in.wms to create RGB data to get a satellite coverage r.in.wms layers=global_mosaic mapserver=http://wms.jpl.nasa.gov/wms.cgi \ Paraview RGB visualization notes To achieve proper RGB overlay:
SEE ALSO r3.out.vtk, r.out.ascii, g.region
AUTHORSoeren Gebbert SOURCE CODEAvailable at: r.out.vtk source code (history) Latest change: Tuesday Dec 17 20:17:20 2024 in commit: d962e90c026708a4815ea2b9f46c0e84c17de22d Main index | Raster index | Topics index | Keywords index | Graphical index | Full index © 2003-2025 GRASS Development Team, GRASS GIS 8.4.1 Reference Manual
|