 |
|
| |
t.rast.aggregate(1) |
GRASS GIS User's Manual |
t.rast.aggregate(1) |
t.rast.aggregate - Aggregates temporally the maps of
a space time raster dataset by a user defined granularity.
temporal, aggregation, raster, time
t.rast.aggregate
t.rast.aggregate --help
t.rast.aggregate [-n] input=name
output=name basename=string
[suffix=string] granularity=string
method=string [offset=integer]
[nprocs=integer] [file_limit=integer]
[sampling=name[,name,...]]
[where=sql_query] [--overwrite] [--help]
[--verbose] [--quiet] [--ui]
- -n
-
Register Null maps
- --overwrite
-
Allow output files to overwrite existing files
- --help
-
Print usage summary
- --verbose
-
Verbose module output
- --quiet
-
Quiet module output
- --ui
-
Force launching GUI dialog
- input=name [required]
-
Name of the input space time raster dataset
- output=name [required]
-
Name of the output space time raster dataset
- basename=string [required]
-
Basename of the new generated output maps
Either a numerical suffix or the start time (s-flag) separated by an
underscore will be attached to create a unique identifier
- suffix=string
-
Suffix to add at basename: set ’gran’ for granularity,
’time’ for the full time format, ’num’ for
numerical suffix with a specific number of digits (default %05)
Default: gran
- granularity=string [required]
-
Aggregation granularity, format absolute time "x years, x months, x
weeks, x days, x hours, x minutes, x seconds" or an integer value for
relative time
- method=string [required]
-
Aggregate operation to be performed on the raster maps
Options: average, count, median, mode, minimum, min_raster, maximum,
max_raster, stddev, range, sum, variance, diversity, slope, offset,
detcoeff, quart1, quart3, perc90, quantile, skewness, kurtosis
Default: average
- offset=integer
-
Offset that is used to create the output map ids, output map id is generated
as: basename_ (count + offset)
Default: 0
- nprocs=integer
-
Number of r.series processes to run in parallel
Default: 1
- file_limit=integer
-
The maximum number of open files allowed for each r.series process
Default: 1000
- sampling=name[,name,...]
-
The method to be used for sampling the input dataset
Options: equal, overlaps, overlapped, starts, started, finishes,
finished, during, contains
Default: contains
- where=sql_query
-
WHERE conditions of SQL statement without ’where’ keyword used
in the temporal GIS framework
Example: start_time > ’2001-01-01 12:30:00’
t.rast.aggregate temporally aggregates space time raster
datasets by a specific temporal granularity. This module support
absolute and relative time. The temporal granularity of
absolute time can be seconds, minutes, hours, days, weeks,
months or years. Mixing of granularities eg. "1 year, 3
months 5 days" is not supported. In case of relative time the temporal
unit of the input space time raster dataset is used. The granularity must be
specified with an integer value.
This module is sensitive to the current region and mask settings,
hence spatial extent and spatial resolution. In case the registered raster
maps of the input space time raster dataset have different spatial
resolutions, the default nearest neighbor resampling method is used for
runtime spatial aggregation.
The raster module r.series is used internally. Hence all
aggregate methods of r.series are supported. See the r.series manual
page for details.
This module will shift the start date for each aggregation process
depending on the provided temporal granularity. The following shifts will
performed:
- granularity years: will start at the first of January, hence
14-08-2012 00:01:30 will be shifted to 01-01-2012 00:00:00
- granularity months: will start at the first day of a month, hence
14-08-2012 will be shifted to 01-08-2012 00:00:00
- granularity weeks: will start at the first day of a week (Monday),
hence 14-08-2012 01:30:30 will be shifted to 13-08-2012 01:00:00
- granularity days: will start at the first hour of a day, hence
14-08-2012 00:01:30 will be shifted to 14-08-2012 00:00:00
- granularity hours: will start at the first minute of a hour, hence
14-08-2012 01:30:30 will be shifted to 14-08-2012 01:00:00
- granularity minutes: will start at the first second of a minute,
hence 14-08-2012 01:30:30 will be shifted to 14-08-2012 01:30:00
The specification of the temporal relation between the aggregation
intervals and the raster map layers is always formulated from the
aggregation interval viewpoint. Hence, the relation contains has to
be specified to aggregate map layer that are temporally located in an
aggregation interval.
Parallel processing is supported in case that more than one
interval is available for aggregation computation. Internally several
r.series modules will be started, depending on the number of
specified parallel processes (nprocs) and the number of intervals to
aggregate.
In this example the user is going to aggregate monthly data into
yearly data, running:
t.rast.aggregate input=tempmean_monthly output=tempmean_yearly \
basename=tempmean_year \
granularity="1 years" method=average
t.support input=tempmean_yearly \
title="Yearly precipitation" \
description="Aggregated precipitation dataset with yearly resolution"
t.info tempmean_yearly
+-------------------- Space Time Raster Dataset -----------------------------+
| |
+-------------------- Basic information -------------------------------------+
| Id: ........................ tempmean_yearly@climate_2000_2012
| Name: ...................... tempmean_yearly
| Mapset: .................... climate_2000_2012
| Creator: ................... lucadelu
| Temporal type: ............. absolute
| Creation time: ............. 2014-11-27 10:25:21.243319
| Modification time:.......... 2014-11-27 10:25:21.862136
| Semantic type:.............. mean
+-------------------- Absolute time -----------------------------------------+
| Start time:................. 2009-01-01 00:00:00
| End time:................... 2013-01-01 00:00:00
| Granularity:................ 1 year
| Temporal type of maps:...... interval
+-------------------- Spatial extent ----------------------------------------+
| North:...................... 320000.0
| South:...................... 10000.0
| East:.. .................... 935000.0
| West:....................... 120000.0
| Top:........................ 0.0
| Bottom:..................... 0.0
+-------------------- Metadata information ----------------------------------+
| Raster register table:...... raster_map_register_514082e62e864522a13c8123d1949dea
| North-South resolution min:. 500.0
| North-South resolution max:. 500.0
| East-west resolution min:... 500.0
| East-west resolution max:... 500.0
| Minimum value min:.......... 7.370747
| Minimum value max:.......... 8.81603
| Maximum value min:.......... 17.111387
| Maximum value max:.......... 17.915511
| Aggregation type:........... average
| Number of registered maps:.. 4
|
| Title: Yearly precipitation
| Monthly precipitation
| Description: Aggregated precipitation dataset with yearly resolution
| Dataset with monthly precipitation
| Command history:
| # 2014-11-27 10:25:21
| t.rast.aggregate input="tempmean_monthly"
| output="tempmean_yearly" basename="tempmean_year" granularity="1 years"
| method="average"
|
| # 2014-11-27 10:26:21
| t.support input=tempmean_yearly \
| title="Yearly precipitation" \
| description="Aggregated precipitation dataset with yearly resolution"
+----------------------------------------------------------------------------+
Examples of resulting naming schemes for different aggregations
when using the suffix option:
t.rast.aggregate input=daily_temp output=weekly_avg_temp \
basename=weekly_avg_temp method=average granularity="1 weeks"
t.rast.list weekly_avg_temp
name|mapset|start_time|end_time
weekly_avg_temp_2003_01|climate|2003-01-03 00:00:00|2003-01-10 00:00:00
weekly_avg_temp_2003_02|climate|2003-01-10 00:00:00|2003-01-17 00:00:00
weekly_avg_temp_2003_03|climate|2003-01-17 00:00:00|2003-01-24 00:00:00
weekly_avg_temp_2003_04|climate|2003-01-24 00:00:00|2003-01-31 00:00:00
weekly_avg_temp_2003_05|climate|2003-01-31 00:00:00|2003-02-07 00:00:00
weekly_avg_temp_2003_06|climate|2003-02-07 00:00:00|2003-02-14 00:00:00
weekly_avg_temp_2003_07|climate|2003-02-14 00:00:00|2003-02-21 00:00:00
Variant with suffix set to granularity:
t.rast.aggregate input=daily_temp output=weekly_avg_temp \
basename=weekly_avg_temp suffix=gran method=average \
granularity="1 weeks"
t.rast.list weekly_avg_temp
name|mapset|start_time|end_time
weekly_avg_temp_2003_01_03|climate|2003-01-03 00:00:00|2003-01-10 00:00:00
weekly_avg_temp_2003_01_10|climate|2003-01-10 00:00:00|2003-01-17 00:00:00
weekly_avg_temp_2003_01_17|climate|2003-01-17 00:00:00|2003-01-24 00:00:00
weekly_avg_temp_2003_01_24|climate|2003-01-24 00:00:00|2003-01-31 00:00:00
weekly_avg_temp_2003_01_31|climate|2003-01-31 00:00:00|2003-02-07 00:00:00
weekly_avg_temp_2003_02_07|climate|2003-02-07 00:00:00|2003-02-14 00:00:00
weekly_avg_temp_2003_02_14|climate|2003-02-14 00:00:00|2003-02-21 00:00:00
t.rast.aggregate input=daily_temp output=monthly_avg_temp \
basename=monthly_avg_temp suffix=gran method=average \
granularity="1 months"
t.rast.list monthly_avg_temp
name|mapset|start_time|end_time
monthly_avg_temp_2003_01|climate|2003-01-01 00:00:00|2003-02-01 00:00:00
monthly_avg_temp_2003_02|climate|2003-02-01 00:00:00|2003-03-01 00:00:00
monthly_avg_temp_2003_03|climate|2003-03-01 00:00:00|2003-04-01 00:00:00
monthly_avg_temp_2003_04|climate|2003-04-01 00:00:00|2003-05-01 00:00:00
monthly_avg_temp_2003_05|climate|2003-05-01 00:00:00|2003-06-01 00:00:00
monthly_avg_temp_2003_06|climate|2003-06-01 00:00:00|2003-07-01 00:00:00
t.rast.aggregate input=daily_temp output=yearly_avg_temp \
basename=yearly_avg_temp suffix=gran method=average \
granularity="1 years"
t.rast.list yearly_avg_temp
name|mapset|start_time|end_time
yearly_avg_temp_2003|climate|2003-01-01 00:00:00|2004-01-01 00:00:00
yearly_avg_temp_2004|climate|2004-01-01 00:00:00|2005-01-01 00:00:00
t.rast.aggregate.ds, t.rast.extract,
t.info, r.series, g.region, r.mask
Temporal data processing Wiki
Sören Gebbert, Thünen Institute of Climate-Smart
Agriculture
Available at: t.rast.aggregate source code (history)
Latest change: Tuesday Apr 23 10:45:15 2024 in commit:
f8115df1219e784a7136e7609f4c9bb16d928e2f
Main index | Temporal index | Topics index | Keywords index |
Graphical index | Full index
© 2003-2025 GRASS Development Team, GRASS GIS 8.4.1
Reference Manual
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc.
|