|
NAMEAI::Categorizer::Learner::DecisionTree - Decision Tree Learner SYNOPSIS use AI::Categorizer::Learner::DecisionTree;
# Here $k is an AI::Categorizer::KnowledgeSet object
my $l = new AI::Categorizer::Learner::DecisionTree(...parameters...);
$l->train(knowledge_set => $k);
$l->save_state('filename');
... time passes ...
$l = AI::Categorizer::Learner->restore_state('filename');
while (my $document = ... ) { # An AI::Categorizer::Document object
my $hypothesis = $l->categorize($document);
print "Best assigned category: ", $hypothesis->best_category, "\n";
}
DESCRIPTIONThis class implements a Decision Tree machine learner, using "AI::DecisionTree" to do the internal work. METHODSThis class inherits from the "AI::Categorizer::Learner" class, so all of its methods are available unless explicitly mentioned here. new()Creates a new DecisionTree Learner and returns it. train(knowledge_set => $k)Trains the categorizer. This prepares it for later use in categorizing documents. The "knowledge_set" parameter must provide an object of the class "AI::Categorizer::KnowledgeSet" (or a subclass thereof), populated with lots of documents and categories. See AI::Categorizer::KnowledgeSet for the details of how to create such an object. categorize($document)Returns an "AI::Categorizer::Hypothesis" object representing the categorizer's "best guess" about which categories the given document should be assigned to. See AI::Categorizer::Hypothesis for more details on how to use this object. save_state($path)Saves the categorizer for later use. This method is inherited from "AI::Categorizer::Storable". AUTHORKen Williams, ken@mathforum.org COPYRIGHTCopyright 2000-2003 Ken Williams. All rights reserved. This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself. SEE ALSOAI::Categorizer(3)
|