GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
Lazy(3) OCaml library Lazy(3)

Lazy - Deferred computations.

Module Lazy

Module Lazy
: sig end

Deferred computations.

type 'a t = 'a CamlinternalLazy.t

A value of type 'a Lazy.t is a deferred computation, called a suspension, that has a result of type 'a . The special expression syntax lazy (expr) makes a suspension of the computation of expr , without computing expr itself yet. "Forcing" the suspension will then compute expr and return its result. Matching a suspension with the special pattern syntax lazy(pattern) also computes the underlying expression and tries to bind it to pattern :


let lazy_option_map f x =
match x with
| lazy (Some x) -> Some (Lazy.force f x)
| _ -> None

Note: If lazy patterns appear in multiple cases in a pattern-matching, lazy expressions may be forced even outside of the case ultimately selected by the pattern matching. In the example above, the suspension x is always computed.

Note: lazy_t is the built-in type constructor used by the compiler for the lazy keyword. You should not use it directly. Always use Lazy.t instead.

Note: Lazy.force is not thread-safe. If you use this module in a multi-threaded program, you will need to add some locks.

Note: if the program is compiled with the -rectypes option, ill-founded recursive definitions of the form let rec x = lazy x or let rec x = lazy(lazy(...(lazy x))) are accepted by the type-checker and lead, when forced, to ill-formed values that trigger infinite loops in the garbage collector and other parts of the run-time system. Without the -rectypes option, such ill-founded recursive definitions are rejected by the type-checker.

exception Undefined

val force : 'a t -> 'a

force x forces the suspension x and returns its result. If x has already been forced, Lazy.force x returns the same value again without recomputing it. If it raised an exception, the same exception is raised again.

Raises Undefined if the forcing of x tries to force x itself recursively.

val map : ('a -> 'b) -> 'a t -> 'b t

map f x returns a suspension that, when forced, forces x and applies f to its value.

It is equivalent to lazy (f (Lazy.force x)) .

Since 4.13.0

val is_val : 'a t -> bool

is_val x returns true if x has already been forced and did not raise an exception.

Since 4.00.0

val from_val : 'a -> 'a t

from_val v evaluates v first (as any function would) and returns an already-forced suspension of its result. It is the same as let x = v in lazy x , but uses dynamic tests to optimize suspension creation in some cases.

Since 4.00.0

val map_val : ('a -> 'b) -> 'a t -> 'b t

map_val f x applies f directly if x is already forced, otherwise it behaves as map f x .

When x is already forced, this behavior saves the construction of a suspension, but on the other hand it performs more work eagerly that may not be useful if you never force the function result.

If f raises an exception, it will be raised immediately when is_val x , or raised only when forcing the thunk otherwise.

If map_val f x does not raise an exception, then is_val (map_val f x) is equal to is_val x .

Since 4.13.0

The following definitions are for advanced uses only; they require familiary with the lazy compilation scheme to be used appropriately.

val from_fun : (unit -> 'a) -> 'a t

from_fun f is the same as lazy (f ()) but slightly more efficient.

It should only be used if the function f is already defined. In particular it is always less efficient to write from_fun (fun () -> expr) than lazy expr .

Since 4.00.0

val force_val : 'a t -> 'a

force_val x forces the suspension x and returns its result. If x has already been forced, force_val x returns the same value again without recomputing it.

If the computation of x raises an exception, it is unspecified whether force_val x raises the same exception or Lazy.Undefined .

Raises Undefined if the forcing of x tries to force x itself recursively.

val lazy_from_fun : (unit -> 'a) -> 'a t

Deprecated. synonym for from_fun .

val lazy_from_val : 'a -> 'a t

Deprecated. synonym for from_val .

val lazy_is_val : 'a t -> bool

Deprecated. synonym for is_val .

2025-07-03 OCamldoc

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.