![]() |
![]()
| ![]() |
![]()
NAMEPaws::Forecast::CreatePredictor - Arguments for method CreatePredictor on Paws::Forecast DESCRIPTIONThis class represents the parameters used for calling the method CreatePredictor on the Amazon Forecast Service service. Use the attributes of this class as arguments to method CreatePredictor. You shouldn't make instances of this class. Each attribute should be used as a named argument in the call to CreatePredictor. SYNOPSISmy $forecast = Paws->service('Forecast'); my $CreatePredictorResponse = $forecast->CreatePredictor( FeaturizationConfig => { ForecastFrequency => 'MyFrequency', Featurizations => [ { AttributeName => 'MyName', # min: 1, max: 63 FeaturizationPipeline => [ { FeaturizationMethodName => 'filling', # values: filling FeaturizationMethodParameters => { 'MyParameterKey' => 'MyParameterValue', # key: max: 256, value: max: 256 }, # min: 1, max: 20; OPTIONAL }, ... ], # min: 1, max: 1; OPTIONAL }, ... ], # min: 1, max: 50; OPTIONAL ForecastDimensions => [ 'MyName', ... # min: 1, max: 63 ], # min: 1, max: 5; OPTIONAL }, ForecastHorizon => 1, InputDataConfig => { DatasetGroupArn => 'MyArn', # max: 256 SupplementaryFeatures => [ { Name => 'MyName', # min: 1, max: 63 Value => 'MyValue', # max: 256 }, ... ], # min: 1, max: 2; OPTIONAL }, PredictorName => 'MyName', AlgorithmArn => 'MyArn', # OPTIONAL AutoMLOverrideStrategy => 'LatencyOptimized', # OPTIONAL EncryptionConfig => { KMSKeyArn => 'MyKMSKeyArn', # max: 256 RoleArn => 'MyArn', # max: 256 }, # OPTIONAL EvaluationParameters => { BackTestWindowOffset => 1, NumberOfBacktestWindows => 1, }, # OPTIONAL ForecastTypes => [ 'MyForecastType', ... ], # OPTIONAL HPOConfig => { ParameterRanges => { CategoricalParameterRanges => [ { Name => 'MyName', # min: 1, max: 63 Values => [ 'MyValue', ... # max: 256 ], # min: 1, max: 20 }, ... ], # min: 1, max: 20; OPTIONAL ContinuousParameterRanges => [ { MaxValue => 1, MinValue => 1, Name => 'MyName', # min: 1, max: 63 ScalingType => 'Auto' , # values: Auto, Linear, Logarithmic, ReverseLogarithmic; OPTIONAL }, ... ], # min: 1, max: 20; OPTIONAL IntegerParameterRanges => [ { MaxValue => 1, MinValue => 1, Name => 'MyName', # min: 1, max: 63 ScalingType => 'Auto' , # values: Auto, Linear, Logarithmic, ReverseLogarithmic; OPTIONAL }, ... ], # min: 1, max: 20; OPTIONAL }, # OPTIONAL }, # OPTIONAL PerformAutoML => 1, # OPTIONAL PerformHPO => 1, # OPTIONAL Tags => [ { Key => 'MyTagKey', # min: 1, max: 128 Value => 'MyTagValue', # max: 256 }, ... ], # OPTIONAL TrainingParameters => { 'MyParameterKey' => 'MyParameterValue', # key: max: 256, value: max: 256 }, # OPTIONAL ); # Results: my $PredictorArn = $CreatePredictorResponse->PredictorArn; # Returns a L<Paws::Forecast::CreatePredictorResponse> object. Values for attributes that are native types (Int, String, Float, etc) can passed as-is (scalar values). Values for complex Types (objects) can be passed as a HashRef. The keys and values of the hashref will be used to instance the underlying object. For the AWS API documentation, see <https://docs.aws.amazon.com/goto/WebAPI/forecast/CreatePredictor> ATTRIBUTESAlgorithmArn => StrThe Amazon Resource Name (ARN) of the algorithm to use for model training. Required if "PerformAutoML" is not set to "true". Supported algorithms:
AutoMLOverrideStrategy => StrUsed to overide the default AutoML strategy, which is to optimize predictor accuracy. To apply an AutoML strategy that minimizes training time, use "LatencyOptimized". This parameter is only valid for predictors trained using AutoML. Valid values are: "LatencyOptimized" EncryptionConfig => Paws::Forecast::EncryptionConfigAn AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key. EvaluationParameters => Paws::Forecast::EvaluationParametersUsed to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations. REQUIRED FeaturizationConfig => Paws::Forecast::FeaturizationConfigThe featurization configuration. REQUIRED ForecastHorizon => IntSpecifies the number of time-steps that the model is trained to predict. The forecast horizon is also called the prediction length. For example, if you configure a dataset for daily data collection (using the "DataFrequency" parameter of the CreateDataset operation) and set the forecast horizon to 10, the model returns predictions for 10 days. The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of the TARGET_TIME_SERIES dataset length. ForecastTypes => ArrayRef[Str|Undef]Specifies the forecast types used to train a predictor. You can specify up to five forecast types. Forecast types can be quantiles from 0.01 to 0.99, by increments of 0.01 or higher. You can also specify the mean forecast with "mean". The default value is "["0.10", "0.50", "0.9"]". HPOConfig => Paws::Forecast::HyperParameterTuningJobConfigProvides hyperparameter override values for the algorithm. If you don't provide this parameter, Amazon Forecast uses default values. The individual algorithms specify which hyperparameters support hyperparameter optimization (HPO). For more information, see aws-forecast-choosing-recipes. If you included the "HPOConfig" object, you must set "PerformHPO" to true. REQUIRED InputDataConfig => Paws::Forecast::InputDataConfigDescribes the dataset group that contains the data to use to train the predictor. PerformAutoML => BoolWhether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates the algorithms it provides and chooses the best algorithm and configuration for your training dataset. The default value is "false". In this case, you are required to specify an algorithm. Set "PerformAutoML" to "true" to have Amazon Forecast perform AutoML. This is a good option if you aren't sure which algorithm is suitable for your training data. In this case, "PerformHPO" must be false. PerformHPO => BoolWhether to perform hyperparameter optimization (HPO). HPO finds optimal hyperparameter values for your training data. The process of performing HPO is known as running a hyperparameter tuning job. The default value is "false". In this case, Amazon Forecast uses default hyperparameter values from the chosen algorithm. To override the default values, set "PerformHPO" to "true" and, optionally, supply the HyperParameterTuningJobConfig object. The tuning job specifies a metric to optimize, which hyperparameters participate in tuning, and the valid range for each tunable hyperparameter. In this case, you are required to specify an algorithm and "PerformAutoML" must be false. The following algorithms support HPO:
REQUIRED PredictorName => StrA name for the predictor. Tags => ArrayRef[Paws::Forecast::Tag]The optional metadata that you apply to the predictor to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define. The following basic restrictions apply to tags:
TrainingParameters => Paws::Forecast::TrainingParametersThe hyperparameters to override for model training. The hyperparameters that you can override are listed in the individual algorithms. For the list of supported algorithms, see aws-forecast-choosing-recipes. SEE ALSOThis class forms part of Paws, documenting arguments for method CreatePredictor in Paws::Forecast BUGS and CONTRIBUTIONSThe source code is located here: <https://github.com/pplu/aws-sdk-perl> Please report bugs to: <https://github.com/pplu/aws-sdk-perl/issues>
|