GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
Paws::SageMaker::CreateAutoMLJob(3) User Contributed Perl Documentation Paws::SageMaker::CreateAutoMLJob(3)

Paws::SageMaker::CreateAutoMLJob - Arguments for method CreateAutoMLJob on Paws::SageMaker

This class represents the parameters used for calling the method CreateAutoMLJob on the Amazon SageMaker Service service. Use the attributes of this class as arguments to method CreateAutoMLJob.

You shouldn't make instances of this class. Each attribute should be used as a named argument in the call to CreateAutoMLJob.

    my $api.sagemaker = Paws->service('SageMaker');
    my $CreateAutoMLJobResponse = $api . sagemaker->CreateAutoMLJob(
      AutoMLJobName   => 'MyAutoMLJobName',
      InputDataConfig => [
        {
          DataSource => {
            S3DataSource => {
              S3DataType => 'ManifestFile',    # values: ManifestFile, S3Prefix
              S3Uri      => 'MyS3Uri',         # max: 1024
            },
          },
          TargetAttributeName => 'MyTargetAttributeName',    # min: 1
          CompressionType     => 'None',    # values: None, Gzip; OPTIONAL
        },
        ...
      ],
      OutputDataConfig => {
        S3OutputPath => 'MyS3Uri',       # max: 1024
        KmsKeyId     => 'MyKmsKeyId',    # max: 2048; OPTIONAL
      },
      RoleArn         => 'MyRoleArn',
      AutoMLJobConfig => {
        CompletionCriteria => {
          MaxAutoMLJobRuntimeInSeconds      => 1,    # min: 1; OPTIONAL
          MaxCandidates                     => 1,    # min: 1; OPTIONAL
          MaxRuntimePerTrainingJobInSeconds => 1,    # min: 1; OPTIONAL
        },    # OPTIONAL
        SecurityConfig => {
          EnableInterContainerTrafficEncryption => 1,    # OPTIONAL
          VolumeKmsKeyId => 'MyKmsKeyId',                # max: 2048; OPTIONAL
          VpcConfig      => {
            SecurityGroupIds => [
              'MySecurityGroupId', ...                   # max: 32
            ],    # min: 1, max: 5
            Subnets => [
              'MySubnetId', ...    # max: 32
            ],    # min: 1, max: 16
          },    # OPTIONAL
        },    # OPTIONAL
      },    # OPTIONAL
      AutoMLJobObjective => {
        MetricName => 'Accuracy',    # values: Accuracy, MSE, F1, F1macro, AUC
      },    # OPTIONAL
      GenerateCandidateDefinitionsOnly => 1,    # OPTIONAL
      ModelDeployConfig                => {
        AutoGenerateEndpointName => 1,                   # OPTIONAL
        EndpointName             => 'MyEndpointName',    # max: 63; OPTIONAL
      },    # OPTIONAL
      ProblemType => 'BinaryClassification',    # OPTIONAL
      Tags        => [
        {
          Key   => 'MyTagKey',      # min: 1, max: 128
          Value => 'MyTagValue',    # max: 256
        },
        ...
      ],    # OPTIONAL
    );
    # Results:
    my $AutoMLJobArn = $CreateAutoMLJobResponse->AutoMLJobArn;
    # Returns a L<Paws::SageMaker::CreateAutoMLJobResponse> object.

Values for attributes that are native types (Int, String, Float, etc) can passed as-is (scalar values). Values for complex Types (objects) can be passed as a HashRef. The keys and values of the hashref will be used to instance the underlying object. For the AWS API documentation, see <https://docs.aws.amazon.com/goto/WebAPI/api.sagemaker/CreateAutoMLJob>

Contains "CompletionCriteria" and "SecurityConfig" settings for the AutoML job.

REQUIRED AutoMLJobName => Str

Identifies an Autopilot job. The name must be unique to your account and is case-insensitive.

Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it.

Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.

REQUIRED InputDataConfig => ArrayRef[Paws::SageMaker::AutoMLChannel]

An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to "InputDataConfig" supported by . Format(s) supported: CSV. Minimum of 500 rows.

Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.

REQUIRED OutputDataConfig => Paws::SageMaker::AutoMLOutputDataConfig

Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.

Defines the type of supervised learning available for the candidates. Options include: "BinaryClassification", "MulticlassClassification", and "Regression". For more information, see Amazon SageMaker Autopilot problem types and algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html).

Valid values are: "BinaryClassification", "MulticlassClassification", "Regression"

REQUIRED RoleArn => Str

The ARN of the role that is used to access the data.

Each tag consists of a key and an optional value. Tag keys must be unique per resource.

This class forms part of Paws, documenting arguments for method CreateAutoMLJob in Paws::SageMaker

The source code is located here: <https://github.com/pplu/aws-sdk-perl>

Please report bugs to: <https://github.com/pplu/aws-sdk-perl/issues>

2022-06-01 perl v5.40.2

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.