![]() |
![]()
| ![]() |
![]()
NAMEPaws::SageMaker::CreateAutoMLJob - Arguments for method CreateAutoMLJob on Paws::SageMaker DESCRIPTIONThis class represents the parameters used for calling the method CreateAutoMLJob on the Amazon SageMaker Service service. Use the attributes of this class as arguments to method CreateAutoMLJob. You shouldn't make instances of this class. Each attribute should be used as a named argument in the call to CreateAutoMLJob. SYNOPSISmy $api.sagemaker = Paws->service('SageMaker'); my $CreateAutoMLJobResponse = $api . sagemaker->CreateAutoMLJob( AutoMLJobName => 'MyAutoMLJobName', InputDataConfig => [ { DataSource => { S3DataSource => { S3DataType => 'ManifestFile', # values: ManifestFile, S3Prefix S3Uri => 'MyS3Uri', # max: 1024 }, }, TargetAttributeName => 'MyTargetAttributeName', # min: 1 CompressionType => 'None', # values: None, Gzip; OPTIONAL }, ... ], OutputDataConfig => { S3OutputPath => 'MyS3Uri', # max: 1024 KmsKeyId => 'MyKmsKeyId', # max: 2048; OPTIONAL }, RoleArn => 'MyRoleArn', AutoMLJobConfig => { CompletionCriteria => { MaxAutoMLJobRuntimeInSeconds => 1, # min: 1; OPTIONAL MaxCandidates => 1, # min: 1; OPTIONAL MaxRuntimePerTrainingJobInSeconds => 1, # min: 1; OPTIONAL }, # OPTIONAL SecurityConfig => { EnableInterContainerTrafficEncryption => 1, # OPTIONAL VolumeKmsKeyId => 'MyKmsKeyId', # max: 2048; OPTIONAL VpcConfig => { SecurityGroupIds => [ 'MySecurityGroupId', ... # max: 32 ], # min: 1, max: 5 Subnets => [ 'MySubnetId', ... # max: 32 ], # min: 1, max: 16 }, # OPTIONAL }, # OPTIONAL }, # OPTIONAL AutoMLJobObjective => { MetricName => 'Accuracy', # values: Accuracy, MSE, F1, F1macro, AUC }, # OPTIONAL GenerateCandidateDefinitionsOnly => 1, # OPTIONAL ModelDeployConfig => { AutoGenerateEndpointName => 1, # OPTIONAL EndpointName => 'MyEndpointName', # max: 63; OPTIONAL }, # OPTIONAL ProblemType => 'BinaryClassification', # OPTIONAL Tags => [ { Key => 'MyTagKey', # min: 1, max: 128 Value => 'MyTagValue', # max: 256 }, ... ], # OPTIONAL ); # Results: my $AutoMLJobArn = $CreateAutoMLJobResponse->AutoMLJobArn; # Returns a L<Paws::SageMaker::CreateAutoMLJobResponse> object. Values for attributes that are native types (Int, String, Float, etc) can passed as-is (scalar values). Values for complex Types (objects) can be passed as a HashRef. The keys and values of the hashref will be used to instance the underlying object. For the AWS API documentation, see <https://docs.aws.amazon.com/goto/WebAPI/api.sagemaker/CreateAutoMLJob> ATTRIBUTESAutoMLJobConfig => Paws::SageMaker::AutoMLJobConfigContains "CompletionCriteria" and "SecurityConfig" settings for the AutoML job. REQUIRED AutoMLJobName => StrIdentifies an Autopilot job. The name must be unique to your account and is case-insensitive. AutoMLJobObjective => Paws::SageMaker::AutoMLJobObjectiveDefines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it. GenerateCandidateDefinitionsOnly => BoolGenerates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings. REQUIRED InputDataConfig => ArrayRef[Paws::SageMaker::AutoMLChannel]An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to "InputDataConfig" supported by . Format(s) supported: CSV. Minimum of 500 rows. ModelDeployConfig => Paws::SageMaker::ModelDeployConfigSpecifies how to generate the endpoint name for an automatic one-click Autopilot model deployment. REQUIRED OutputDataConfig => Paws::SageMaker::AutoMLOutputDataConfigProvides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV. ProblemType => StrDefines the type of supervised learning available for the candidates. Options include: "BinaryClassification", "MulticlassClassification", and "Regression". For more information, see Amazon SageMaker Autopilot problem types and algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html). Valid values are: "BinaryClassification", "MulticlassClassification", "Regression" REQUIRED RoleArn => StrThe ARN of the role that is used to access the data. Tags => ArrayRef[Paws::SageMaker::Tag]Each tag consists of a key and an optional value. Tag keys must be unique per resource. SEE ALSOThis class forms part of Paws, documenting arguments for method CreateAutoMLJob in Paws::SageMaker BUGS and CONTRIBUTIONSThe source code is located here: <https://github.com/pplu/aws-sdk-perl> Please report bugs to: <https://github.com/pplu/aws-sdk-perl/issues>
|