 |
|
| |
Paws::SageMaker::InputConfig(3) |
User Contributed Perl Documentation |
Paws::SageMaker::InputConfig(3) |
Paws::SageMaker::InputConfig
This class represents one of two things:
Arguments in a call to a service
Use the attributes of this class as arguments to methods. You
shouldn't make instances of this class. Each attribute should be used as a
named argument in the calls that expect this type of object.
As an example, if Att1 is expected to be a
Paws::SageMaker::InputConfig object:
$service_obj->Method(Att1 => { DataInputConfig => $value, ..., S3Uri => $value });
Results returned from an API call
Use accessors for each attribute. If Att1 is expected to be an
Paws::SageMaker::InputConfig object:
$result = $service_obj->Method(...);
$result->Att1->DataInputConfig
Contains information about the location of input model artifacts,
the name and shape of the expected data inputs, and the framework in which
the model was trained.
REQUIRED DataInputConfig => Str
Specifies the name and shape of the expected data inputs for your
trained model with a JSON dictionary form. The data inputs are
InputConfig$Framework specific.
- •
- "TensorFlow": You must specify the name
and shape (NHWC format) of the expected data inputs using a dictionary
format for your trained model. The dictionary formats required for the
console and CLI are different.
- •
- Examples for one input:
- If using the console,
"{"input":[1,1024,1024,3]}"
- If using the CLI,
"{\"input\":[1,1024,1024,3]}"
- •
- Examples for two inputs:
- If using the console, "{"data1":
[1,28,28,1], "data2":[1,28,28,1]}"
- If using the CLI, "{\"data1\":
[1,28,28,1], \"data2\":[1,28,28,1]}"
- •
- "KERAS": You must specify the name and
shape (NCHW format) of expected data inputs using a dictionary format for
your trained model. Note that while Keras model artifacts should be
uploaded in NHWC (channel-last) format,
"DataInputConfig" should be specified in
NCHW (channel-first) format. The dictionary formats required for the
console and CLI are different.
- •
- Examples for one input:
- If using the console,
"{"input_1":[1,3,224,224]}"
- If using the CLI,
"{\"input_1\":[1,3,224,224]}"
- •
- Examples for two inputs:
- If using the console, "{"input_1":
[1,3,224,224],
"input_2":[1,3,224,224]}"
- If using the CLI, "{\"input_1\":
[1,3,224,224],
\"input_2\":[1,3,224,224]}"
- •
- "MXNET/ONNX/DARKNET": You must specify
the name and shape (NCHW format) of the expected data inputs in order
using a dictionary format for your trained model. The dictionary formats
required for the console and CLI are different.
- •
- Examples for one input:
- If using the console,
"{"data":[1,3,1024,1024]}"
- If using the CLI,
"{\"data\":[1,3,1024,1024]}"
- •
- Examples for two inputs:
- If using the console, "{"var1":
[1,1,28,28], "var2":[1,1,28,28]}"
- If using the CLI, "{\"var1\": [1,1,28,28],
\"var2\":[1,1,28,28]}"
- •
- "PyTorch": You can either specify the
name and shape (NCHW format) of expected data inputs in order using a
dictionary format for your trained model or you can specify the shape only
using a list format. The dictionary formats required for the console and
CLI are different. The list formats for the console and CLI are the
same.
- •
- Examples for one input in dictionary format:
- If using the console,
"{"input0":[1,3,224,224]}"
- If using the CLI,
"{\"input0\":[1,3,224,224]}"
- Example for one input in list format:
"[[1,3,224,224]]"
- Examples for two inputs in dictionary format:
- If using the console,
"{"input0":[1,3,224,224],
"input1":[1,3,224,224]}"
- If using the CLI,
"{\"input0\":[1,3,224,224],
\"input1\":[1,3,224,224]}"
- •
- Example for two inputs in list format:
"[[1,3,224,224],
[1,3,224,224]]"
- •
- "XGBOOST": input data name and shape are
not needed.
"DataInputConfig" supports the
following parameters for "CoreML"
OutputConfig$TargetDevice (ML Model format):
- •
- "shape": Input shape, for example
"{"input_1": {"shape":
[1,224,224,3]}}". In addition to static input
shapes, CoreML converter supports Flexible input shapes:
- Range Dimension. You can use the Range Dimension feature if you know the
input shape will be within some specific interval in that dimension, for
example: "{"input_1": {"shape":
["1..10", 224, 224,
3]}}"
- Enumerated shapes. Sometimes, the models are trained to work only on a
select set of inputs. You can enumerate all supported input shapes, for
example: "{"input_1": {"shape":
[[1, 224, 224, 3], [1, 160, 160,
3]]}}"
- "default_shape": Default input shape.
You can set a default shape during conversion for both Range Dimension and
Enumerated Shapes. For example
"{"input_1": {"shape":
["1..10", 224, 224, 3],
"default_shape": [1, 224, 224,
3]}}"
- "type": Input type. Allowed values:
"Image" and
"Tensor". By default, the converter
generates an ML Model with inputs of type Tensor (MultiArray). User can
set input type to be Image. Image input type requires additional input
parameters such as "bias" and
"scale".
- "bias": If the input type is an Image,
you need to provide the bias vector.
- "scale": If the input type is an Image,
you need to provide a scale factor.
CoreML "ClassifierConfig"
parameters can be specified using OutputConfig$CompilerOptions. CoreML
converter supports Tensorflow and PyTorch models. CoreML conversion
examples:
- •
- Tensor type input:
- •
- ""DataInputConfig": {"input_1":
{"shape": [[1,224,224,3],
[1,160,160,3]], "default_shape":
[1,224,224,3]}}"
- •
- Tensor type input without input name (PyTorch):
- •
- ""DataInputConfig": [{"shape":
[[1,3,224,224], [1,3,160,160]],
"default_shape":
[1,3,224,224]}]"
- •
- Image type input:
- ""DataInputConfig": {"input_1":
{"shape": [[1,224,224,3],
[1,160,160,3]], "default_shape": [1,224,224,3],
"type": "Image",
"bias": [-1,-1,-1], "scale":
0.007843137255}}"
- ""CompilerOptions":
{"class_labels":
"imagenet_labels_1000.txt"}"
- •
- Image type input without input name (PyTorch):
- ""DataInputConfig": [{"shape":
[[1,3,224,224], [1,3,160,160]],
"default_shape": [1,3,224,224],
"type": "Image", "bias": [-1,-1,-1],
"scale": 0.007843137255}]"
- ""CompilerOptions":
{"class_labels":
"imagenet_labels_1000.txt"}"
Depending on the model format,
"DataInputConfig" requires the following
parameters for "ml_eia2"
OutputConfig:TargetDevice
(https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice).
- •
- For TensorFlow models saved in the SavedModel format, specify the input
names from "signature_def_key" and the
input model shapes for
"DataInputConfig". Specify the
"signature_def_key" in
"OutputConfig:CompilerOptions"
(https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions)
if the model does not use TensorFlow's default signature def key. For
example:
- ""DataInputConfig": {"inputs":
[1, 224, 224, 3]}"
- ""CompilerOptions":
{"signature_def_key":
"serving_custom"}"
- •
- For TensorFlow models saved as a frozen graph, specify the input tensor
names and shapes in "DataInputConfig"
and the output tensor names for
"output_names" in
"OutputConfig:CompilerOptions"
(https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions).
For example:
- ""DataInputConfig":
{"input_tensor:0": [1, 224, 224, 3]}"
- ""CompilerOptions":
{"output_names":
["output_tensor:0"]}"
REQUIRED Framework => Str
Identifies the framework in which the model was trained. For
example: TENSORFLOW.
Specifies the framework version to use.
This API field is only supported for PyTorch framework versions
1.4, 1.5, and
1.6 for cloud instance target devices:
"ml_c4",
"ml_c5",
"ml_m4",
"ml_m5",
"ml_p2",
"ml_p3", and
"ml_g4dn".
REQUIRED S3Uri => Str
The S3 path where the model artifacts, which result from model
training, are stored. This path must point to a single gzip compressed tar
archive (.tar.gz suffix).
This class forms part of Paws, describing an object used in
Paws::SageMaker
The source code is located here:
<https://github.com/pplu/aws-sdk-perl>
Please report bugs to:
<https://github.com/pplu/aws-sdk-perl/issues>
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc.
|