GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
RTC_GEOMETRY_TYPE_USER(3) Embree Ray Tracing Kernels 3 RTC_GEOMETRY_TYPE_USER(3)


RTC_GEOMETRY_TYPE_USER - user geometry type

    


#include <embree3/rtcore.h>
RTCGeometry geometry =
  rtcNewGeometry(device, RTC_GEOMETRY_TYPE_USER);

    

User-defined geometries contain a number of user-defined primitives, just like triangle meshes contain multiple triangles. The shape of the user-defined primitives is specified through registered callback functions, which enable extending Embree with arbitrary types of primitives.

User-defined geometries are created by passing RTC_GEOMETRY_TYPE_USER to the rtcNewGeometry function call. One has to set the number of primitives (see rtcSetGeometryUserPrimitiveCount), a user data pointer (see rtcSetGeometryUserData), a bounding function closure (see rtcSetGeometryBoundsFunction), as well as user-defined intersect (see rtcSetGeometryIntersectFunction) and occluded (see rtcSetGeometryOccludedFunction) callback functions. The bounding function is used to query the bounds of all time steps of a user primitive, while the intersect and occluded callback functions are called to intersect the primitive with a ray. The user data pointer is passed to each callback invocation and can be used to point to the application’s representation of the user geometry.

The creation of a user geometry typically looks the following:


RTCGeometry geometry = rtcNewGeometry(device, RTC_GEOMETRY_TYPE_USER);
rtcSetGeometryUserPrimitiveCount(geometry, numPrimitives);
rtcSetGeometryUserData(geometry, userGeometryRepresentation);
rtcSetGeometryBoundsFunction(geometry, boundsFunction);
rtcSetGeometryIntersectFunction(geometry, intersectFunction);
rtcSetGeometryOccludedFunction(geometry, occludedFunction);

    

Please have a look at the rtcSetGeometryBoundsFunction, rtcSetGeometryIntersectFunction, and rtcSetGeometryOccludedFunction functions on the implementation of the callback functions.

Primitives of a user geometry are ignored during rendering when their bounds are empty, thus bounds have lower>upper in at least one dimension.

See tutorial [User Geometry] for an example of how to use the user-defined geometries.

On failure NULL is returned and an error code is set that can be queried using rtcGetDeviceError.

[rtcNewGeometry], [rtcSetGeometryUserPrimitiveCount], [rtcSetGeometryUserData], [rtcSetGeometryBoundsFunction], [rtcSetGeometryIntersectFunction], [rtcSetGeometryOccludedFunction]

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.