![]() |
![]()
| ![]() |
![]()
Text::ASCIIMathML - Perl extension for parsing ASCIIMathML text into MathML SYNOPSISuse Text::ASCIIMathML; $parser=new Text::ASCIIMathML(); $parser->SetAttributes(ForMoz => 1); $ASCIIMathML = "int_0^1 e^x dx"; $mathML = $parser->TextToMathML($ASCIIMathML); $mathML = $parser->TextToMathML($ASCIIMathML, [title=>$ASCIIMathML]); $mathML = $parser->TextToMathML($ASCIIMathML, undef, [displaystyle=>1]); $mathMLTree = $parser->TextToMathMLTree($ASCIIMathML); $mathMLTree = $parser->TextToMathMLTree($ASCIIMathML, [title=>$ASCIIMathML]); $mathMLTree = $parser->TextToMathMLTree($ASCIIMathML,undef,[displaystyle=>1]); $mathML = $mathMLTree->text(); $latex = $mathMLTree->latex(); DESCRIPTIONText::ASCIIMathML is a parser for ASCIIMathML text which produces MathML XML markup strings that are suitable for rendering by any MathML-compliant browser.The parser uses the following attributes which are settable through the SetAttributes method:
The output of the TextToMathML method always follows the schema <math><mstyle>...</mstyle></math> The first argument of TextToMathML is the ASCIIMathML text to be parsed into MathML. The second argument is a reference to an array of attribute/value pairs to be attached to the <math> node and the third argument is a reference to an array of attribute/value pairs for the <mstyle> node. Common attributes for the <math> node are "title" and "xmlns"=>"&mathml;". Common attributes for the <mstyle> node are "mathcolor" (for text color), "displaystyle"=>"true" for using display style instead of inline style, and "fontfamily". ASCIIMathML markupThe syntax is very permissive and does not generate syntax errors. This allows mathematically incorrect expressions to be displayed, which is important for teaching purposes. It also causes less frustration when previewing formulas.If you encode 'x^2' or 'a_(mn)' or 'a_{mn}' or '(x+1)/y' or 'sqrtx', you pretty much get what you expect. The choice of grouping parenthesis is up to you (they don't have to match either). If the displayed expression can be parsed uniquely without them, they are omitted. Most LaTeX commands are also supported, so the last two formulas above can also be written as '\frac{x+1}{y}' and '\sqrt{x}'. The parser uses no operator precedence and only respects the grouping brackets, subscripts, superscript, fractions and (square) roots. This is done for reasons of efficiency and generality. The resulting MathML code can quite easily be processed further to ensure additional syntactic requirements of any particular application. The grammar Here is a definition of the grammar used to parse ASCIIMathML expressions. In the Backus-Naur form given below, the letter on the left of the "::=" represents a category of symbols that could be one of the possible sequences of symbols listed on the right. The vertical bar "|" separates the alternatives. c ::= [A-z] | numbers | greek letters | other constant symbols (see below) u ::= 'sqrt' | 'text' | 'bb' | other unary symbols for font commands b ::= 'frac' | 'root' | 'stackrel' | 'newcommand' | 'newsymbol' binary symbols l ::= ( | [ | { | (: | {: left brackets r ::= ) | ] | } | :) | :} right brackets S ::= c | lEr | uS | bSS | "any" simple expression E ::= SE | S/S |S_S | S^S | S_S^S expression (fraction, sub-, super-, subsuperscript) The translation rules Each terminal symbol is translated into a corresponding MathML node. The constants are mostly converted to their respective Unicode symbols. The other expressions are converted as follows: lSr -> <mrow>lSr</mrow> (note that any pair of brackets can be used to delimit subexpressions, they don't have to match) sqrt S -> <msqrt>S'</msqrt> text S -> <mtext>S'</mtext> "any" -> <mtext>any</mtext> frac S1 S2 -> <mfrac>S1' S2'</mfrac> root S1 S2 -> <mroot>S2' S1'</mroot> stackrel S1 S2 -> <mover>S2' S1'</mover> S1/S2 -> <mfrac>S1' S2'</mfrac> S1_S2 -> <msub>S1 S2'</msub> S1^S2 -> <msup>S1 S2'</msup> S1_S2^S3 -> <msubsup>S1 S2' S3'</msubsup> or <munderover>S1 S2' S3'</munderover> (in some cases) S1^S2_S3 -> <msubsup>S1 S3' S2'</msubsup> or <munderover>S1 S3' S2'</munderover> (in some cases) In the rules above, the expression "S'" is the same as "S", except that if "S" has an outer level of brackets, then "S'" is the expression inside these brackets. Matrices A simple syntax for matrices is also recognized: l(S11,...,S1n),(...),(Sm1,...,Smn)r or l[S11,...,S1n],[...],[Sm1,...,Smn]r. Here "l" and "r" stand for any of the left and right brackets (just like in the grammar they do not have to match). Both of these expressions are translated to <mrow>l<mtable><mtr><mtd>S11</mtd>... <mtd>S1n</mtd></mtr>... <mtr><mtd>Sm1</mtd>... <mtd>Smn</mtd></mtr></mtable>r</mrow>. Note that each row must have the same number of expressions, and there should be at least two rows. LaTeX matrix commands are not recognized. Tokenization The input formula is broken into tokens using a "longest matching initial substring search". Suppose the input formula has been processed from left to right up to a fixed position. The longest string from the list of constants (given below) that matches the initial part of the remainder of the formula is the next token. If there is no matching string, then the first character of the remainder is the next token. The symbol table at the top of the ASCIIMathML.js script specifies whether a symbol is a math operator (surrounded by a "<mo>" tag) or a math identifier (surrounded by a "<mi>" tag). For single character tokens, letters are treated as math identifiers, and non-alphanumeric characters are treated as math operators. For digits, see "Numbers" below. Spaces are significant when they separate characters and thus prevent a certain string of characters from matching one of the constants. Multiple spaces and end-of-line characters are equivalent to a single space. Numbers A string of digits, optionally followed by a decimal point (a period) and another string of digits, is parsed as a single token and converted to a MathML number, i.e., enclosed with the "<mn>" tag. Greek letters
Standard functions sin cos tan csc sec cot sinh cosh tanh log ln det dim lim mod gcd lcm min max Operation symbols Type Description Entity + + + - - - * Mid dot ⋅ ** Star ⋆ // / / \\ \ \ xx Cross product × -: Divided by ÷ @ Compose functions ∘ o+ Circle with plus ⊕ ox Circle with x ⊗ o. Circle with dot ⊙ sum Sum for sub- and superscript ∑ prod Product for sub- and superscript ∏ ^^ Logic "and" ∧ ^^^ Logic "and" for sub- and superscript ⋀ vv Logic "or" ∨ vvv Logic "or" for sub- and superscript ⋁ nn Logic "intersect" ∩ nnn Logic "intersect" for sub- and superscript ⋂ uu Logic "union" ∪ uuu Logic "union" for sub- and superscript ⋃ Relation symbols Type Description Entity = = = != Not equals ≠ < < < > > > <= Less than or equal ≤ >= Greater than or equal ≥ -lt Precedes ≺ >- Succeeds ≻ in Element of ∈ !in Not an element of ∉ sub Subset ⊂ sup Superset ⊃ sube Subset or equal ⊆ supe Superset or equal ⊇ -= Equivalent ≡ ~= Congruent to ≅ ~~ Asymptotically equal to ≈ prop Proportional to ∝ Logical symbols Type Description Entity and And " and " or Or " or " not Not ¬ => Implies ⇒ if If " if " iff If and only if ⇔ AA For all ∀ EE There exists ∃ _|_ Perpendicular, bottom ⊥ TT Top ⊤ |-- Right tee ⊢ |== Double right tee ⊨ Grouping brackets Type Description Entity ( ( ( ) ) ) [ [ [ ] ] ] { { { } } } (: Left angle bracket ⟨ :) Right angle bracket ⟩ {: Invisible left grouping element :} Invisible right grouping element Miscellaneous symbols Type Description Entity int Integral ∫ oint Countour integral ∮ del Partial derivative &del; grad Gradient ∇ +- Plus or minus ± O/ Null set ∅ oo Infinity ∞ aleph Hebrew letter aleph ℵ & Ampersand & /_ Angle ∠ :. Therefore ∴ ... Ellipsis ... cdots Three centered dots ⋯ \<sp> Non-breaking space (<sp> means space) quad Quad space diamond Diamond ⋄ square Square □ |__ Left floor ⌊ __| Right floor ⌋ |~ Left ceiling ⌈ ~| Right ceiling ⌉ CC Complex numbers ℂ NN Natural numbers ℕ QQ Rational numbers ℚ RR Real numbers ℝ ZZ Integers ℤ Arrows Type Description Entity uarr Up arrow ↑ darr Down arrow ↓ rarr Right arrow → -> Right arrow → larr Left arrow ← harr Horizontal (two-way) arrow ↔ rArr Right double arrow ⇒ lArr Left double arrow ⇐ hArr Horizontal double arrow ⇔ Accents Type Description Output hat x Hat over x <mover><mi>x</mi><mo>^</mo></mover> bar x Bar over x <mover><mi>x</mi><mo>¯</mo></mover> ul x Underbar under x <munder><mi>x</mi><mo>_</mo></munder> vec x Right arrow over x <mover><mi>x</mi><mo>→</mo><mover> dot x Dot over x <mover><mi>x</mi><mo>.</mo><mover> ddot x Double dot over x <mover><mi>x</mi><mo>..</mo><mover> Font commands Type Description bb A Bold A bbb A Double-struck A cc A Calligraphic (script) A tt A Teletype (monospace) A fr A Fraktur A sf A Sans-serif A Defining new commands and symbols It is possible to define new commands and symbols using the 'newcommand' and 'newsymbol' binary operators. The former defines a macro that gets expanded and reparsed as ASCIIMathML and the latter defines a constant that gets used as a math operator ("<mo>") element. Both of the arguments must be text, optionally enclosed in grouping operators. The 'newsymbol' operator also allows the second argument to be a group of two text strings where the first is the mathml operator and the second is the latex code to be output. For example, 'newcommand "DDX" "{:d/dx:}"' would define a new command 'DDX'. It could then be invoked like 'DDXf(x)', which would expand to '{:d/dx:}f(x)'. The text 'newsymbol{"!le"}{"≰"}' could be used to create a symbol you could invoke with '!le', as in 'a !le b'. Attributes for <math>
Attributes for <mstyle>
METHODS"Text::ASCIIMathML""TextToMathML($text, [$math_attr], [$mstyle_attr])"Converts $text to a MathML string. If the optional $math_attr argument is provided, it should be a reference to a hash of attribute/value pairs for the " <math" > node. If the optional $mstyle_attr argument is provided, it should be a reference to a hash of attribute/value pairs for the " <mstyle" > node. "TextToMathMLTree($text, [$math_attr], [$mstyle_attr])" Like "TextToMathMLTree" except that instead of returning a string, it returns a "Text::ASCIIMathML::Node" representing the parsed MathML structure. "Text::ASCIIMathML::Node""text"Returns a MathML string representing the parsed MathML structure encoded by the "Text::ASCIIMathML::Node". "latex" Returns a LaTeX string representing the parsed MathML structure encoded by the "Text::ASCIIMathML::Node". BUGS AND SUGGESTIONSIf you find bugs, think of anything that could improve Text::ASCIIMathML or have any questions related to it, feel free to contact the author.AUTHORMark Nodine <mnodine@alum.mit.edu>SEE ALSOMathML::Entities, <http://www1.chapman.edu/~jipsen/mathml/asciimathsyntax.xml> ACKNOWLEDGEMENTSThis Perl module has been created by modifying Peter Jipsen's ASCIIMathML.js script. He deserves full credit for the original implementation; any bugs have probably been introduced by me.COPYRIGHTThe Text::ASCIIMathML module is copyright (c) 2006 Mark Nodine, USA. All rights reserved.You may use and distribute them under the terms of either the GNU General Public License or the Artistic License, as specified in the Perl README file. POD ERRORSHey! The above document had some coding errors, which are explained below:
|