GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
bdsdc(3) LAPACK bdsdc(3)

bdsdc - bdsdc: bidiagonal SVD, divide and conquer


subroutine dbdsdc (uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work, iwork, info)
DBDSDC subroutine sbdsdc (uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work, iwork, info)
SBDSDC

DBDSDC

Purpose:


DBDSDC computes the singular value decomposition (SVD) of a real
N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT,
using a divide and conquer method, where S is a diagonal matrix
with non-negative diagonal elements (the singular values of B), and
U and VT are orthogonal matrices of left and right singular vectors,
respectively. DBDSDC can be used to compute all singular values,
and optionally, singular vectors or singular vectors in compact form.
The code currently calls DLASDQ if singular values only are desired.
However, it can be slightly modified to compute singular values
using the divide and conquer method.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': B is upper bidiagonal.
= 'L': B is lower bidiagonal.

COMPQ


COMPQ is CHARACTER*1
Specifies whether singular vectors are to be computed
as follows:
= 'N': Compute singular values only;
= 'P': Compute singular values and compute singular
vectors in compact form;
= 'I': Compute singular values and singular vectors.

N


N is INTEGER
The order of the matrix B. N >= 0.

D


D is DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the bidiagonal matrix B.
On exit, if INFO=0, the singular values of B.

E


E is DOUBLE PRECISION array, dimension (N-1)
On entry, the elements of E contain the offdiagonal
elements of the bidiagonal matrix whose SVD is desired.
On exit, E has been destroyed.

U


U is DOUBLE PRECISION array, dimension (LDU,N)
If COMPQ = 'I', then:
On exit, if INFO = 0, U contains the left singular vectors
of the bidiagonal matrix.
For other values of COMPQ, U is not referenced.

LDU


LDU is INTEGER
The leading dimension of the array U. LDU >= 1.
If singular vectors are desired, then LDU >= max( 1, N ).

VT


VT is DOUBLE PRECISION array, dimension (LDVT,N)
If COMPQ = 'I', then:
On exit, if INFO = 0, VT**T contains the right singular
vectors of the bidiagonal matrix.
For other values of COMPQ, VT is not referenced.

LDVT


LDVT is INTEGER
The leading dimension of the array VT. LDVT >= 1.
If singular vectors are desired, then LDVT >= max( 1, N ).

Q


Q is DOUBLE PRECISION array, dimension (LDQ)
If COMPQ = 'P', then:
On exit, if INFO = 0, Q and IQ contain the left
and right singular vectors in a compact form,
requiring O(N log N) space instead of 2*N**2.
In particular, Q contains all the DOUBLE PRECISION data in
LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
words of memory, where SMLSIZ is returned by ILAENV and
is equal to the maximum size of the subproblems at the
bottom of the computation tree (usually about 25).
For other values of COMPQ, Q is not referenced.

IQ


IQ is INTEGER array, dimension (LDIQ)
If COMPQ = 'P', then:
On exit, if INFO = 0, Q and IQ contain the left
and right singular vectors in a compact form,
requiring O(N log N) space instead of 2*N**2.
In particular, IQ contains all INTEGER data in
LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
words of memory, where SMLSIZ is returned by ILAENV and
is equal to the maximum size of the subproblems at the
bottom of the computation tree (usually about 25).
For other values of COMPQ, IQ is not referenced.

WORK


WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
If COMPQ = 'N' then LWORK >= (4 * N).
If COMPQ = 'P' then LWORK >= (6 * N).
If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).

IWORK


IWORK is INTEGER array, dimension (8*N)

INFO


INFO is INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute a singular value.
The update process of divide and conquer failed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA

Definition at line 196 of file dbdsdc.f.

SBDSDC

Purpose:


SBDSDC computes the singular value decomposition (SVD) of a real
N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT,
using a divide and conquer method, where S is a diagonal matrix
with non-negative diagonal elements (the singular values of B), and
U and VT are orthogonal matrices of left and right singular vectors,
respectively. SBDSDC can be used to compute all singular values,
and optionally, singular vectors or singular vectors in compact form.
The code currently calls SLASDQ if singular values only are desired.
However, it can be slightly modified to compute singular values
using the divide and conquer method.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': B is upper bidiagonal.
= 'L': B is lower bidiagonal.

COMPQ


COMPQ is CHARACTER*1
Specifies whether singular vectors are to be computed
as follows:
= 'N': Compute singular values only;
= 'P': Compute singular values and compute singular
vectors in compact form;
= 'I': Compute singular values and singular vectors.

N


N is INTEGER
The order of the matrix B. N >= 0.

D


D is REAL array, dimension (N)
On entry, the n diagonal elements of the bidiagonal matrix B.
On exit, if INFO=0, the singular values of B.

E


E is REAL array, dimension (N-1)
On entry, the elements of E contain the offdiagonal
elements of the bidiagonal matrix whose SVD is desired.
On exit, E has been destroyed.

U


U is REAL array, dimension (LDU,N)
If COMPQ = 'I', then:
On exit, if INFO = 0, U contains the left singular vectors
of the bidiagonal matrix.
For other values of COMPQ, U is not referenced.

LDU


LDU is INTEGER
The leading dimension of the array U. LDU >= 1.
If singular vectors are desired, then LDU >= max( 1, N ).

VT


VT is REAL array, dimension (LDVT,N)
If COMPQ = 'I', then:
On exit, if INFO = 0, VT**T contains the right singular
vectors of the bidiagonal matrix.
For other values of COMPQ, VT is not referenced.

LDVT


LDVT is INTEGER
The leading dimension of the array VT. LDVT >= 1.
If singular vectors are desired, then LDVT >= max( 1, N ).

Q


Q is REAL array, dimension (LDQ)
If COMPQ = 'P', then:
On exit, if INFO = 0, Q and IQ contain the left
and right singular vectors in a compact form,
requiring O(N log N) space instead of 2*N**2.
In particular, Q contains all the REAL data in
LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
words of memory, where SMLSIZ is returned by ILAENV and
is equal to the maximum size of the subproblems at the
bottom of the computation tree (usually about 25).
For other values of COMPQ, Q is not referenced.

IQ


IQ is INTEGER array, dimension (LDIQ)
If COMPQ = 'P', then:
On exit, if INFO = 0, Q and IQ contain the left
and right singular vectors in a compact form,
requiring O(N log N) space instead of 2*N**2.
In particular, IQ contains all INTEGER data in
LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
words of memory, where SMLSIZ is returned by ILAENV and
is equal to the maximum size of the subproblems at the
bottom of the computation tree (usually about 25).
For other values of COMPQ, IQ is not referenced.

WORK


WORK is REAL array, dimension (MAX(1,LWORK))
If COMPQ = 'N' then LWORK >= (4 * N).
If COMPQ = 'P' then LWORK >= (6 * N).
If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).

IWORK


IWORK is INTEGER array, dimension (8*N)

INFO


INFO is INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute a singular value.
The update process of divide and conquer failed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA

Definition at line 196 of file sbdsdc.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:37 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.