![]() |
![]()
| ![]() |
![]()
NAMEbignum - transparent big number support for Perl SYNOPSISuse bignum; $x = 2 + 4.5; # Math::BigFloat 6.5 print 2 ** 512 * 0.1; # Math::BigFloat 134...09.6 print 2 ** 512; # Math::BigInt 134...096 print inf + 42; # Math::BigInt inf print NaN * 7; # Math::BigInt NaN print hex("0x1234567890123490"); # Perl v5.10.0 or later { no bignum; print 2 ** 256; # a normal Perl scalar now } # for older Perls, import into current package: use bignum qw/hex oct/; print hex("0x1234567890123490"); print oct("01234567890123490"); DESCRIPTIONLiteral numeric constantsBy default, every literal integer becomes a Math::BigInt object, and literal non-integer becomes a Math::BigFloat object. Whether a numeric literal is considered an integer or non-integers depends only on the value of the constant, not on how it is represented. For instance, the constants 3.14e2 and 0x1.3ap8 become Math::BigInt objects, because they both represent the integer value decimal 314. The default "use bignum;" is equivalent to use bignum downgrade => "Math::BigInt", upgrade => "Math::BigFloat"; The classes used for integers and non-integers can be set at compile time with the "downgrade" and "upgrade" options, for example # use Math::BigInt for integers and Math::BigRat for non-integers use bignum upgrade => "Math::BigRat"; Note that disabling downgrading and upgrading does not affect how numeric literals are converted to objects # disable both downgrading and upgrading use bignum downgrade => undef, upgrade => undef; $x = 2.4; # becomes 2.4 as a Math::BigFloat $y = 2; # becomes 2 as a Math::BigInt Upgrading and downgradingBy default, when the result of a computation is an integer, an Inf, or a NaN, the result is downgraded even when all the operands are instances of the upgrade class. use bignum; $x = 2.4; # becomes 2.4 as a Math::BigFloat $y = 1.2; # becomes 1.2 as a Math::BigFloat $z = $x / $y; # becomes 2 as a Math::BigInt due to downgrading Equivalently, by default, when the result of a computation is a finite non-integer, the result is upgraded even when all the operands are instances of the downgrade class. use bignum; $x = 7; # becomes 7 as a Math::BigInt $y = 2; # becomes 2 as a Math::BigInt $z = $x / $y; # becomes 3.5 as a Math::BigFloat due to upgrading The classes used for downgrading and upgrading can be set at runtime with the "downgrade()" and "upgrade()" methods, but see "CAVEATS" below. The upgrade and downgrade classes don't have to be Math::BigInt and Math::BigFloat. For example, to use Math::BigRat as the upgrade class, use use bignum upgrade => "Math::BigRat"; $x = 2; # becomes 2 as a Math::BigInt $y = 3.6; # becomes 18/5 as a Math::BigRat The upgrade and downgrade classes can be modified at runtime use bignum; $x = 3; # becomes 3 as a Math::BigInt $y = 2; # becomes 2 as a Math::BigInt $z = $x / $y; # becomes 1.5 as a Math::BigFlaot bignum -> upgrade("Math::BigRat"); $w = $x / $y; # becomes 3/2 as a Math::BigRat Disabling downgrading doesn't change the fact that literal constant integers are converted to the downgrade class, it only prevents downgrading as a result of a computation. E.g., use bignum downgrade => undef; $x = 2; # becomes 2 as a Math::BigInt $y = 2.4; # becomes 2.4 as a Math::BigFloat $z = 1.2; # becomes 1.2 as a Math::BigFloat $w = $x / $y; # becomes 2 as a Math::BigFloat due to no downgrading If you want all numeric literals, both integers and non-integers, to become Math::BigFloat objects, use the bigfloat pragma. Equivalently, disabling upgrading doesn't change the fact that literal constant non-integers are converted to the upgrade class, it only prevents upgrading as a result of a computation. E.g., use bignum upgrade => undef; $x = 2.5; # becomes 2.5 as a Math::BigFloat $y = 7; # becomes 7 as a Math::BigInt $z = 2; # becomes 2 as a Math::BigInt $w = $x / $y; # becomes 3 as a Math::BigInt due to no upgrading If you want all numeric literals, both integers and non-integers, to become Math::BigInt objects, use the bigint pragma. You can even do use bignum upgrade => "Math::BigRat", upgrade => undef; which converts all integer literals to Math::BigInt objects and all non-integer literals to Math::BigRat objects. However, when the result of a computation involving two Math::BigInt objects results in a non-integer (e.g., 7/2), the result will be truncted to a Math::BigInt rather than being upgraded to a Math::BigRat, since upgrading is disabled. OverloadingSince all numeric literals become objects, you can call all the usual methods from Math::BigInt and Math::BigFloat on them. This even works to some extent on expressions: perl -Mbignum -le '$x = 1234; print $x->bdec()' perl -Mbignum -le 'print 1234->copy()->binc();' perl -Mbignum -le 'print 1234->copy()->binc()->badd(6);' Options"bignum" recognizes some options that can be passed while loading it via via "use". The following options exist:
Math LibraryMath with the numbers is done (by default) by a backend library module called Math::BigInt::Calc. The default is equivalent to saying: use bignum lib => 'Calc'; you can change this by using: use bignum lib => 'GMP'; The following would first try to find Math::BigInt::Foo, then Math::BigInt::Bar, and if this also fails, revert to Math::BigInt::Calc: use bignum lib => 'Foo,Math::BigInt::Bar'; Using c<lib> warns if none of the specified libraries can be found and Math::BigInt and Math::BigFloat fell back to one of the default libraries. To suppress this warning, use "try" instead: use bignum try => 'GMP'; If you want the code to die instead of falling back, use "only" instead: use bignum only => 'GMP'; Please see respective module documentation for further details. Method callsSince all numbers are now objects, you can use the methods that are part of the Math::BigInt and Math::BigFloat API. But a warning is in order. When using the following to make a copy of a number, only a shallow copy will be made. $x = 9; $y = $x; $x = $y = 7; Using the copy or the original with overloaded math is okay, e.g., the following work: $x = 9; $y = $x; print $x + 1, " ", $y,"\n"; # prints 10 9 but calling any method that modifies the number directly will result in both the original and the copy being destroyed: $x = 9; $y = $x; print $x->badd(1), " ", $y,"\n"; # prints 10 10 $x = 9; $y = $x; print $x->binc(1), " ", $y,"\n"; # prints 10 10 $x = 9; $y = $x; print $x->bmul(2), " ", $y,"\n"; # prints 18 18 Using methods that do not modify, but test that the contents works: $x = 9; $y = $x; $z = 9 if $x->is_zero(); # works fine See the documentation about the copy constructor and "=" in overload, as well as the documentation in Math::BigFloat for further details. Methods
CAVEATS
EXAMPLESSome cool command line examples to impress the Python crowd ;) perl -Mbignum -le 'print sqrt(33)' perl -Mbignum -le 'print 2**255' perl -Mbignum -le 'print 4.5+2**255' perl -Mbignum -le 'print 3/7 + 5/7 + 8/3' perl -Mbignum -le 'print 123->is_odd()' perl -Mbignum -le 'print log(2)' perl -Mbignum -le 'print exp(1)' perl -Mbignum -le 'print 2 ** 0.5' perl -Mbignum=a,65 -le 'print 2 ** 0.2' perl -Mbignum=l,GMP -le 'print 7 ** 7777' BUGSPlease report any bugs or feature requests to "bug-bignum at rt.cpan.org", or through the web interface at <https://rt.cpan.org/Ticket/Create.html?Queue=bignum> (requires login). We will be notified, and then you'll automatically be notified of progress on your bug as I make changes. SUPPORTYou can find documentation for this module with the perldoc command. perldoc bignum You can also look for information at:
LICENSEThis program is free software; you may redistribute it and/or modify it under the same terms as Perl itself. SEE ALSObigint and bigrat. Math::BigInt, Math::BigFloat, Math::BigRat and Math::Big as well as Math::BigInt::FastCalc, Math::BigInt::Pari and Math::BigInt::GMP. AUTHORS
|