GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
TESTING/EIG/ccsdts.f(3) LAPACK TESTING/EIG/ccsdts.f(3)

TESTING/EIG/ccsdts.f


subroutine ccsdts (m, p, q, x, xf, ldx, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, theta, iwork, work, lwork, rwork, result)
CCSDTS

CCSDTS

Purpose:


CCSDTS tests CUNCSD, which, given an M-by-M partitioned unitary
matrix X,
Q M-Q
X = [ X11 X12 ] P ,
[ X21 X22 ] M-P
computes the CSD
[ U1 ]**T * [ X11 X12 ] * [ V1 ]
[ U2 ] [ X21 X22 ] [ V2 ]
[ I 0 0 | 0 0 0 ]
[ 0 C 0 | 0 -S 0 ]
[ 0 0 0 | 0 0 -I ]
= [---------------------] = [ D11 D12 ] .
[ 0 0 0 | I 0 0 ] [ D21 D22 ]
[ 0 S 0 | 0 C 0 ]
[ 0 0 I | 0 0 0 ]
and also SORCSD2BY1, which, given
Q
[ X11 ] P ,
[ X21 ] M-P
computes the 2-by-1 CSD
[ I 0 0 ]
[ 0 C 0 ]
[ 0 0 0 ]
[ U1 ]**T * [ X11 ] * V1 = [----------] = [ D11 ] ,
[ U2 ] [ X21 ] [ 0 0 0 ] [ D21 ]
[ 0 S 0 ]
[ 0 0 I ]

Parameters

M


M is INTEGER
The number of rows of the matrix X. M >= 0.

P


P is INTEGER
The number of rows of the matrix X11. P >= 0.

Q


Q is INTEGER
The number of columns of the matrix X11. Q >= 0.

X


X is COMPLEX array, dimension (LDX,M)
The M-by-M matrix X.

XF


XF is COMPLEX array, dimension (LDX,M)
Details of the CSD of X, as returned by CUNCSD;
see CUNCSD for further details.

LDX


LDX is INTEGER
The leading dimension of the arrays X and XF.
LDX >= max( 1,M ).

U1


U1 is COMPLEX array, dimension(LDU1,P)
The P-by-P unitary matrix U1.

LDU1


LDU1 is INTEGER
The leading dimension of the array U1. LDU >= max(1,P).

U2


U2 is COMPLEX array, dimension(LDU2,M-P)
The (M-P)-by-(M-P) unitary matrix U2.

LDU2


LDU2 is INTEGER
The leading dimension of the array U2. LDU >= max(1,M-P).

V1T


V1T is COMPLEX array, dimension(LDV1T,Q)
The Q-by-Q unitary matrix V1T.

LDV1T


LDV1T is INTEGER
The leading dimension of the array V1T. LDV1T >=
max(1,Q).

V2T


V2T is COMPLEX array, dimension(LDV2T,M-Q)
The (M-Q)-by-(M-Q) unitary matrix V2T.

LDV2T


LDV2T is INTEGER
The leading dimension of the array V2T. LDV2T >=
max(1,M-Q).

THETA


THETA is REAL array, dimension MIN(P,M-P,Q,M-Q)
The CS values of X; the essentially diagonal matrices C and
S are constructed from THETA; see subroutine CUNCSD for
details.

IWORK


IWORK is INTEGER array, dimension (M)

WORK


WORK is COMPLEX array, dimension (LWORK)

LWORK


LWORK is INTEGER
The dimension of the array WORK

RWORK


RWORK is REAL array

RESULT


RESULT is REAL array, dimension (15)
The test ratios:
First, the 2-by-2 CSD:
RESULT(1) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 )
RESULT(2) = norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 )
RESULT(3) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 )
RESULT(4) = norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 )
RESULT(5) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP )
RESULT(6) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP )
RESULT(7) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP )
RESULT(8) = norm( I - V2T'*V2T ) / ( MAX(1,M-Q)*ULP )
RESULT(9) = 0 if THETA is in increasing order and
all angles are in [0,pi/2];
= ULPINV otherwise.
Then, the 2-by-1 CSD:
RESULT(10) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 )
RESULT(11) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 )
RESULT(12) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP )
RESULT(13) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP )
RESULT(14) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP )
RESULT(15) = 0 if THETA is in increasing order and
all angles are in [0,pi/2];
= ULPINV otherwise.
( EPS2 = MAX( norm( I - X'*X ) / M, ULP ). )

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 226 of file ccsdts.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:33 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.