GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
TESTING/EIG/dgsvts3.f(3) LAPACK TESTING/EIG/dgsvts3.f(3)

TESTING/EIG/dgsvts3.f


subroutine dgsvts3 (m, p, n, a, af, lda, b, bf, ldb, u, ldu, v, ldv, q, ldq, alpha, beta, r, ldr, iwork, work, lwork, rwork, result)
DGSVTS3

DGSVTS3

Purpose:


DGSVTS3 tests DGGSVD3, which computes the GSVD of an M-by-N matrix A
and a P-by-N matrix B:
U'*A*Q = D1*R and V'*B*Q = D2*R.

Parameters

M


M is INTEGER
The number of rows of the matrix A. M >= 0.

P


P is INTEGER
The number of rows of the matrix B. P >= 0.

N


N is INTEGER
The number of columns of the matrices A and B. N >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA,M)
The M-by-N matrix A.

AF


AF is DOUBLE PRECISION array, dimension (LDA,N)
Details of the GSVD of A and B, as returned by DGGSVD3,
see DGGSVD3 for further details.

LDA


LDA is INTEGER
The leading dimension of the arrays A and AF.
LDA >= max( 1,M ).

B


B is DOUBLE PRECISION array, dimension (LDB,P)
On entry, the P-by-N matrix B.

BF


BF is DOUBLE PRECISION array, dimension (LDB,N)
Details of the GSVD of A and B, as returned by DGGSVD3,
see DGGSVD3 for further details.

LDB


LDB is INTEGER
The leading dimension of the arrays B and BF.
LDB >= max(1,P).

U


U is DOUBLE PRECISION array, dimension(LDU,M)
The M by M orthogonal matrix U.

LDU


LDU is INTEGER
The leading dimension of the array U. LDU >= max(1,M).

V


V is DOUBLE PRECISION array, dimension(LDV,M)
The P by P orthogonal matrix V.

LDV


LDV is INTEGER
The leading dimension of the array V. LDV >= max(1,P).

Q


Q is DOUBLE PRECISION array, dimension(LDQ,N)
The N by N orthogonal matrix Q.

LDQ


LDQ is INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).

ALPHA


ALPHA is DOUBLE PRECISION array, dimension (N)

BETA


BETA is DOUBLE PRECISION array, dimension (N)
The generalized singular value pairs of A and B, the
``diagonal'' matrices D1 and D2 are constructed from
ALPHA and BETA, see subroutine DGGSVD3 for details.

R


R is DOUBLE PRECISION array, dimension(LDQ,N)
The upper triangular matrix R.

LDR


LDR is INTEGER
The leading dimension of the array R. LDR >= max(1,N).

IWORK


IWORK is INTEGER array, dimension (N)

WORK


WORK is DOUBLE PRECISION array, dimension (LWORK)

LWORK


LWORK is INTEGER
The dimension of the array WORK,
LWORK >= max(M,P,N)*max(M,P,N).

RWORK


RWORK is DOUBLE PRECISION array, dimension (max(M,P,N))

RESULT


RESULT is DOUBLE PRECISION array, dimension (6)
The test ratios:
RESULT(1) = norm( U'*A*Q - D1*R ) / ( MAX(M,N)*norm(A)*ULP)
RESULT(2) = norm( V'*B*Q - D2*R ) / ( MAX(P,N)*norm(B)*ULP)
RESULT(3) = norm( I - U'*U ) / ( M*ULP )
RESULT(4) = norm( I - V'*V ) / ( P*ULP )
RESULT(5) = norm( I - Q'*Q ) / ( N*ULP )
RESULT(6) = 0 if ALPHA is in decreasing order;
= ULPINV otherwise.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 207 of file dgsvts3.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:33 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.