GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
gbrfs(3) LAPACK gbrfs(3)

gbrfs - gbrfs: iterative refinement


subroutine cgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CGBRFS subroutine dgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
DGBRFS subroutine sgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
SGBRFS subroutine zgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZGBRFS

CGBRFS

Purpose:


CGBRFS improves the computed solution to a system of linear
equations when the coefficient matrix is banded, and provides
error bounds and backward error estimates for the solution.

Parameters

TRANS


TRANS is CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose)

N


N is INTEGER
The order of the matrix A. N >= 0.

KL


KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.

KU


KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.

AB


AB is COMPLEX array, dimension (LDAB,N)
The original band matrix A, stored in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.

AFB


AFB is COMPLEX array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as
computed by CGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.

LDAFB


LDAFB is INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.

IPIV


IPIV is INTEGER array, dimension (N)
The pivot indices from CGBTRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).

B


B is COMPLEX array, dimension (LDB,NRHS)
The right hand side matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

X


X is COMPLEX array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by CGBTRS.
On exit, the improved solution matrix X.

LDX


LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).

FERR


FERR is REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.

BERR


BERR is REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).

WORK


WORK is COMPLEX array, dimension (2*N)

RWORK


RWORK is REAL array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Internal Parameters:


ITMAX is the maximum number of steps of iterative refinement.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 203 of file cgbrfs.f.

DGBRFS

Purpose:


DGBRFS improves the computed solution to a system of linear
equations when the coefficient matrix is banded, and provides
error bounds and backward error estimates for the solution.

Parameters

TRANS


TRANS is CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)

N


N is INTEGER
The order of the matrix A. N >= 0.

KL


KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.

KU


KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.

AB


AB is DOUBLE PRECISION array, dimension (LDAB,N)
The original band matrix A, stored in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.

AFB


AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as
computed by DGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.

LDAFB


LDAFB is INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.

IPIV


IPIV is INTEGER array, dimension (N)
The pivot indices from DGBTRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).

B


B is DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

X


X is DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DGBTRS.
On exit, the improved solution matrix X.

LDX


LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).

FERR


FERR is DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.

BERR


BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).

WORK


WORK is DOUBLE PRECISION array, dimension (3*N)

IWORK


IWORK is INTEGER array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Internal Parameters:


ITMAX is the maximum number of steps of iterative refinement.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 202 of file dgbrfs.f.

SGBRFS

Purpose:


SGBRFS improves the computed solution to a system of linear
equations when the coefficient matrix is banded, and provides
error bounds and backward error estimates for the solution.

Parameters

TRANS


TRANS is CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)

N


N is INTEGER
The order of the matrix A. N >= 0.

KL


KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.

KU


KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.

AB


AB is REAL array, dimension (LDAB,N)
The original band matrix A, stored in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.

AFB


AFB is REAL array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as
computed by SGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.

LDAFB


LDAFB is INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.

IPIV


IPIV is INTEGER array, dimension (N)
The pivot indices from SGBTRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).

B


B is REAL array, dimension (LDB,NRHS)
The right hand side matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

X


X is REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SGBTRS.
On exit, the improved solution matrix X.

LDX


LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).

FERR


FERR is REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.

BERR


BERR is REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).

WORK


WORK is REAL array, dimension (3*N)

IWORK


IWORK is INTEGER array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Internal Parameters:


ITMAX is the maximum number of steps of iterative refinement.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 202 of file sgbrfs.f.

ZGBRFS

Purpose:


ZGBRFS improves the computed solution to a system of linear
equations when the coefficient matrix is banded, and provides
error bounds and backward error estimates for the solution.

Parameters

TRANS


TRANS is CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose)

N


N is INTEGER
The order of the matrix A. N >= 0.

KL


KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.

KU


KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.

AB


AB is COMPLEX*16 array, dimension (LDAB,N)
The original band matrix A, stored in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.

AFB


AFB is COMPLEX*16 array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as
computed by ZGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.

LDAFB


LDAFB is INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.

IPIV


IPIV is INTEGER array, dimension (N)
The pivot indices from ZGBTRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).

B


B is COMPLEX*16 array, dimension (LDB,NRHS)
The right hand side matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

X


X is COMPLEX*16 array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by ZGBTRS.
On exit, the improved solution matrix X.

LDX


LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).

FERR


FERR is DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.

BERR


BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).

WORK


WORK is COMPLEX*16 array, dimension (2*N)

RWORK


RWORK is DOUBLE PRECISION array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Internal Parameters:


ITMAX is the maximum number of steps of iterative refinement.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 203 of file zgbrfs.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:35 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.