 |
|
| |
gerq2 - gerq2: RQ factor, level 2
subroutine cgerq2 (m, n, a, lda, tau, work, info)
CGERQ2 computes the RQ factorization of a general rectangular matrix
using an unblocked algorithm. subroutine dgerq2 (m, n, a, lda, tau,
work, info)
DGERQ2 computes the RQ factorization of a general rectangular matrix
using an unblocked algorithm. subroutine sgerq2 (m, n, a, lda, tau,
work, info)
SGERQ2 computes the RQ factorization of a general rectangular matrix
using an unblocked algorithm. subroutine zgerq2 (m, n, a, lda, tau,
work, info)
ZGERQ2 computes the RQ factorization of a general rectangular matrix
using an unblocked algorithm.
CGERQ2 computes the RQ factorization of a general
rectangular matrix using an unblocked algorithm.
Purpose:
CGERQ2 computes an RQ factorization of a complex m by n matrix A:
A = R * Q.
Parameters
M
M is INTEGER
The number of rows of the matrix A. M >= 0.
N
N is INTEGER
The number of columns of the matrix A. N >= 0.
A
A is COMPLEX array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the m by n upper trapezoidal matrix R; the remaining
elements, with the array TAU, represent the unitary matrix
Q as a product of elementary reflectors (see Further
Details).
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU
TAU is COMPLEX array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK
WORK is COMPLEX array, dimension (M)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrix Q is represented as a product of elementary reflectors
Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**H
where tau is a complex scalar, and v is a complex vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
Definition at line 122 of file cgerq2.f.
DGERQ2 computes the RQ factorization of a general
rectangular matrix using an unblocked algorithm.
Purpose:
DGERQ2 computes an RQ factorization of a real m by n matrix A:
A = R * Q.
Parameters
M
M is INTEGER
The number of rows of the matrix A. M >= 0.
N
N is INTEGER
The number of columns of the matrix A. N >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the m by n upper trapezoidal matrix R; the remaining
elements, with the array TAU, represent the orthogonal matrix
Q as a product of elementary reflectors (see Further
Details).
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU
TAU is DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK
WORK is DOUBLE PRECISION array, dimension (M)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**T
where tau is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and tau in TAU(i).
Definition at line 122 of file dgerq2.f.
SGERQ2 computes the RQ factorization of a general
rectangular matrix using an unblocked algorithm.
Purpose:
SGERQ2 computes an RQ factorization of a real m by n matrix A:
A = R * Q.
Parameters
M
M is INTEGER
The number of rows of the matrix A. M >= 0.
N
N is INTEGER
The number of columns of the matrix A. N >= 0.
A
A is REAL array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the m by n upper trapezoidal matrix R; the remaining
elements, with the array TAU, represent the orthogonal matrix
Q as a product of elementary reflectors (see Further
Details).
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU
TAU is REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK
WORK is REAL array, dimension (M)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**T
where tau is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and tau in TAU(i).
Definition at line 122 of file sgerq2.f.
ZGERQ2 computes the RQ factorization of a general
rectangular matrix using an unblocked algorithm.
Purpose:
ZGERQ2 computes an RQ factorization of a complex m by n matrix A:
A = R * Q.
Parameters
M
M is INTEGER
The number of rows of the matrix A. M >= 0.
N
N is INTEGER
The number of columns of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the m by n upper trapezoidal matrix R; the remaining
elements, with the array TAU, represent the unitary matrix
Q as a product of elementary reflectors (see Further
Details).
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU
TAU is COMPLEX*16 array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK
WORK is COMPLEX*16 array, dimension (M)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrix Q is represented as a product of elementary reflectors
Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**H
where tau is a complex scalar, and v is a complex vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
Definition at line 122 of file zgerq2.f.
Generated automatically by Doxygen for LAPACK from the source
code.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc.
|