 |
|
| |
getf2 - getf2: triangular factor panel, level 2
subroutine cgetf2 (m, n, a, lda, ipiv, info)
CGETF2 computes the LU factorization of a general m-by-n matrix using
partial pivoting with row interchanges (unblocked algorithm). subroutine
dgetf2 (m, n, a, lda, ipiv, info)
DGETF2 computes the LU factorization of a general m-by-n matrix using
partial pivoting with row interchanges (unblocked algorithm). subroutine
sgetf2 (m, n, a, lda, ipiv, info)
SGETF2 computes the LU factorization of a general m-by-n matrix using
partial pivoting with row interchanges (unblocked algorithm). subroutine
zgetf2 (m, n, a, lda, ipiv, info)
ZGETF2 computes the LU factorization of a general m-by-n matrix using
partial pivoting with row interchanges (unblocked algorithm).
CGETF2 computes the LU factorization of a general m-by-n
matrix using partial pivoting with row interchanges (unblocked
algorithm).
Purpose:
CGETF2 computes an LU factorization of a general m-by-n matrix A
using partial pivoting with row interchanges.
The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
This is the right-looking Level 2 BLAS version of the algorithm.
Parameters
M
M is INTEGER
The number of rows of the matrix A. M >= 0.
N
N is INTEGER
The number of columns of the matrix A. N >= 0.
A
A is COMPLEX array, dimension (LDA,N)
On entry, the m by n matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
IPIV
IPIV is INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, U(k,k) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 107 of file cgetf2.f.
DGETF2 computes the LU factorization of a general m-by-n
matrix using partial pivoting with row interchanges (unblocked
algorithm).
Purpose:
DGETF2 computes an LU factorization of a general m-by-n matrix A
using partial pivoting with row interchanges.
The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
This is the right-looking Level 2 BLAS version of the algorithm.
Parameters
M
M is INTEGER
The number of rows of the matrix A. M >= 0.
N
N is INTEGER
The number of columns of the matrix A. N >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
IPIV
IPIV is INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, U(k,k) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 107 of file dgetf2.f.
SGETF2 computes the LU factorization of a general m-by-n
matrix using partial pivoting with row interchanges (unblocked
algorithm).
Purpose:
SGETF2 computes an LU factorization of a general m-by-n matrix A
using partial pivoting with row interchanges.
The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
This is the right-looking Level 2 BLAS version of the algorithm.
Parameters
M
M is INTEGER
The number of rows of the matrix A. M >= 0.
N
N is INTEGER
The number of columns of the matrix A. N >= 0.
A
A is REAL array, dimension (LDA,N)
On entry, the m by n matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
IPIV
IPIV is INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, U(k,k) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 107 of file sgetf2.f.
ZGETF2 computes the LU factorization of a general m-by-n
matrix using partial pivoting with row interchanges (unblocked
algorithm).
Purpose:
ZGETF2 computes an LU factorization of a general m-by-n matrix A
using partial pivoting with row interchanges.
The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
This is the right-looking Level 2 BLAS version of the algorithm.
Parameters
M
M is INTEGER
The number of rows of the matrix A. M >= 0.
N
N is INTEGER
The number of columns of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N)
On entry, the m by n matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
IPIV
IPIV is INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, U(k,k) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 107 of file zgetf2.f.
Generated automatically by Doxygen for LAPACK from the source
code.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc.
|