GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
ggsvd3(3) LAPACK ggsvd3(3)

ggsvd3 - ggsvd3: SVD, QR iteration


subroutine cggsvd3 (jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v, ldv, q, ldq, work, lwork, rwork, iwork, info)
CGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices subroutine dggsvd3 (jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v, ldv, q, ldq, work, lwork, iwork, info)
DGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices subroutine sggsvd3 (jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v, ldv, q, ldq, work, lwork, iwork, info)
SGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices subroutine zggsvd3 (jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v, ldv, q, ldq, work, lwork, rwork, iwork, info)
ZGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices

CGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices

Purpose:


CGGSVD3 computes the generalized singular value decomposition (GSVD)
of an M-by-N complex matrix A and P-by-N complex matrix B:
U**H*A*Q = D1*( 0 R ), V**H*B*Q = D2*( 0 R )
where U, V and Q are unitary matrices.
Let K+L = the effective numerical rank of the
matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) 'diagonal'
matrices and of the following structures, respectively:
If M-K-L >= 0,
K L
D1 = K ( I 0 )
L ( 0 C )
M-K-L ( 0 0 )
K L
D2 = L ( 0 S )
P-L ( 0 0 )
N-K-L K L
( 0 R ) = K ( 0 R11 R12 )
L ( 0 0 R22 )
where
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
S = diag( BETA(K+1), ... , BETA(K+L) ),
C**2 + S**2 = I.
R is stored in A(1:K+L,N-K-L+1:N) on exit.
If M-K-L < 0,
K M-K K+L-M
D1 = K ( I 0 0 )
M-K ( 0 C 0 )
K M-K K+L-M
D2 = M-K ( 0 S 0 )
K+L-M ( 0 0 I )
P-L ( 0 0 0 )
N-K-L K M-K K+L-M
( 0 R ) = K ( 0 R11 R12 R13 )
M-K ( 0 0 R22 R23 )
K+L-M ( 0 0 0 R33 )
where
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
S = diag( BETA(K+1), ... , BETA(M) ),
C**2 + S**2 = I.
(R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
( 0 R22 R23 )
in B(M-K+1:L,N+M-K-L+1:N) on exit.
The routine computes C, S, R, and optionally the unitary
transformation matrices U, V and Q.
In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
A and B implicitly gives the SVD of A*inv(B):
A*inv(B) = U*(D1*inv(D2))*V**H.
If ( A**H,B**H)**H has orthonormal columns, then the GSVD of A and B is also
equal to the CS decomposition of A and B. Furthermore, the GSVD can
be used to derive the solution of the eigenvalue problem:
A**H*A x = lambda* B**H*B x.
In some literature, the GSVD of A and B is presented in the form
U**H*A*X = ( 0 D1 ), V**H*B*X = ( 0 D2 )
where U and V are orthogonal and X is nonsingular, and D1 and D2 are
``diagonal''. The former GSVD form can be converted to the latter
form by taking the nonsingular matrix X as
X = Q*( I 0 )
( 0 inv(R) )

Parameters

JOBU


JOBU is CHARACTER*1
= 'U': Unitary matrix U is computed;
= 'N': U is not computed.

JOBV


JOBV is CHARACTER*1
= 'V': Unitary matrix V is computed;
= 'N': V is not computed.

JOBQ


JOBQ is CHARACTER*1
= 'Q': Unitary matrix Q is computed;
= 'N': Q is not computed.

M


M is INTEGER
The number of rows of the matrix A. M >= 0.

N


N is INTEGER
The number of columns of the matrices A and B. N >= 0.

P


P is INTEGER
The number of rows of the matrix B. P >= 0.

K


K is INTEGER

L


L is INTEGER
On exit, K and L specify the dimension of the subblocks
described in Purpose.
K + L = effective numerical rank of (A**H,B**H)**H.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A contains the triangular matrix R, or part of R.
See Purpose for details.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

B


B is COMPLEX array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, B contains part of the triangular matrix R if
M-K-L < 0. See Purpose for details.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,P).

ALPHA


ALPHA is REAL array, dimension (N)

BETA


BETA is REAL array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular
value pairs of A and B;
ALPHA(1:K) = 1,
BETA(1:K) = 0,
and if M-K-L >= 0,
ALPHA(K+1:K+L) = C,
BETA(K+1:K+L) = S,
or if M-K-L < 0,
ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
BETA(K+1:M) =S, BETA(M+1:K+L) =1
and
ALPHA(K+L+1:N) = 0
BETA(K+L+1:N) = 0

U


U is COMPLEX array, dimension (LDU,M)
If JOBU = 'U', U contains the M-by-M unitary matrix U.
If JOBU = 'N', U is not referenced.

LDU


LDU is INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.

V


V is COMPLEX array, dimension (LDV,P)
If JOBV = 'V', V contains the P-by-P unitary matrix V.
If JOBV = 'N', V is not referenced.

LDV


LDV is INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.

Q


Q is COMPLEX array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
If JOBQ = 'N', Q is not referenced.

LDQ


LDQ is INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.

WORK


WORK is COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

RWORK


RWORK is REAL array, dimension (2*N)

IWORK


IWORK is INTEGER array, dimension (N)
On exit, IWORK stores the sorting information. More
precisely, the following loop will sort ALPHA
for I = K+1, min(M,K+L)
swap ALPHA(I) and ALPHA(IWORK(I))
endfor
such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).

INFO


INFO is INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, the Jacobi-type procedure failed to
converge. For further details, see subroutine CTGSJA.

Internal Parameters:


TOLA REAL
TOLB REAL
TOLA and TOLB are the thresholds to determine the effective
rank of (A**H,B**H)**H. Generally, they are set to
TOLA = MAX(M,N)*norm(A)*MACHEPS,
TOLB = MAX(P,N)*norm(B)*MACHEPS.
The size of TOLA and TOLB may affect the size of backward
errors of the decomposition.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA

Further Details:

CGGSVD3 replaces the deprecated subroutine CGGSVD.

Definition at line 351 of file cggsvd3.f.

DGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices

Purpose:


DGGSVD3 computes the generalized singular value decomposition (GSVD)
of an M-by-N real matrix A and P-by-N real matrix B:
U**T*A*Q = D1*( 0 R ), V**T*B*Q = D2*( 0 R )
where U, V and Q are orthogonal matrices.
Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T,
then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
D2 are M-by-(K+L) and P-by-(K+L) 'diagonal' matrices and of the
following structures, respectively:
If M-K-L >= 0,
K L
D1 = K ( I 0 )
L ( 0 C )
M-K-L ( 0 0 )
K L
D2 = L ( 0 S )
P-L ( 0 0 )
N-K-L K L
( 0 R ) = K ( 0 R11 R12 )
L ( 0 0 R22 )
where
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
S = diag( BETA(K+1), ... , BETA(K+L) ),
C**2 + S**2 = I.
R is stored in A(1:K+L,N-K-L+1:N) on exit.
If M-K-L < 0,
K M-K K+L-M
D1 = K ( I 0 0 )
M-K ( 0 C 0 )
K M-K K+L-M
D2 = M-K ( 0 S 0 )
K+L-M ( 0 0 I )
P-L ( 0 0 0 )
N-K-L K M-K K+L-M
( 0 R ) = K ( 0 R11 R12 R13 )
M-K ( 0 0 R22 R23 )
K+L-M ( 0 0 0 R33 )
where
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
S = diag( BETA(K+1), ... , BETA(M) ),
C**2 + S**2 = I.
(R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
( 0 R22 R23 )
in B(M-K+1:L,N+M-K-L+1:N) on exit.
The routine computes C, S, R, and optionally the orthogonal
transformation matrices U, V and Q.
In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
A and B implicitly gives the SVD of A*inv(B):
A*inv(B) = U*(D1*inv(D2))*V**T.
If ( A**T,B**T)**T has orthonormal columns, then the GSVD of A and B is
also equal to the CS decomposition of A and B. Furthermore, the GSVD
can be used to derive the solution of the eigenvalue problem:
A**T*A x = lambda* B**T*B x.
In some literature, the GSVD of A and B is presented in the form
U**T*A*X = ( 0 D1 ), V**T*B*X = ( 0 D2 )
where U and V are orthogonal and X is nonsingular, D1 and D2 are
``diagonal''. The former GSVD form can be converted to the latter
form by taking the nonsingular matrix X as
X = Q*( I 0 )
( 0 inv(R) ).

Parameters

JOBU


JOBU is CHARACTER*1
= 'U': Orthogonal matrix U is computed;
= 'N': U is not computed.

JOBV


JOBV is CHARACTER*1
= 'V': Orthogonal matrix V is computed;
= 'N': V is not computed.

JOBQ


JOBQ is CHARACTER*1
= 'Q': Orthogonal matrix Q is computed;
= 'N': Q is not computed.

M


M is INTEGER
The number of rows of the matrix A. M >= 0.

N


N is INTEGER
The number of columns of the matrices A and B. N >= 0.

P


P is INTEGER
The number of rows of the matrix B. P >= 0.

K


K is INTEGER

L


L is INTEGER
On exit, K and L specify the dimension of the subblocks
described in Purpose.
K + L = effective numerical rank of (A**T,B**T)**T.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A contains the triangular matrix R, or part of R.
See Purpose for details.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

B


B is DOUBLE PRECISION array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, B contains the triangular matrix R if M-K-L < 0.
See Purpose for details.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,P).

ALPHA


ALPHA is DOUBLE PRECISION array, dimension (N)

BETA


BETA is DOUBLE PRECISION array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular
value pairs of A and B;
ALPHA(1:K) = 1,
BETA(1:K) = 0,
and if M-K-L >= 0,
ALPHA(K+1:K+L) = C,
BETA(K+1:K+L) = S,
or if M-K-L < 0,
ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
BETA(K+1:M) =S, BETA(M+1:K+L) =1
and
ALPHA(K+L+1:N) = 0
BETA(K+L+1:N) = 0

U


U is DOUBLE PRECISION array, dimension (LDU,M)
If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
If JOBU = 'N', U is not referenced.

LDU


LDU is INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.

V


V is DOUBLE PRECISION array, dimension (LDV,P)
If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
If JOBV = 'N', V is not referenced.

LDV


LDV is INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.

Q


Q is DOUBLE PRECISION array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
If JOBQ = 'N', Q is not referenced.

LDQ


LDQ is INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.

WORK


WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

IWORK


IWORK is INTEGER array, dimension (N)
On exit, IWORK stores the sorting information. More
precisely, the following loop will sort ALPHA
for I = K+1, min(M,K+L)
swap ALPHA(I) and ALPHA(IWORK(I))
endfor
such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).

INFO


INFO is INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, the Jacobi-type procedure failed to
converge. For further details, see subroutine DTGSJA.

Internal Parameters:


TOLA DOUBLE PRECISION
TOLB DOUBLE PRECISION
TOLA and TOLB are the thresholds to determine the effective
rank of (A**T,B**T)**T. Generally, they are set to
TOLA = MAX(M,N)*norm(A)*MACHEPS,
TOLB = MAX(P,N)*norm(B)*MACHEPS.
The size of TOLA and TOLB may affect the size of backward
errors of the decomposition.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA

Further Details:

DGGSVD3 replaces the deprecated subroutine DGGSVD.

Definition at line 346 of file dggsvd3.f.

SGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices

Purpose:


SGGSVD3 computes the generalized singular value decomposition (GSVD)
of an M-by-N real matrix A and P-by-N real matrix B:
U**T*A*Q = D1*( 0 R ), V**T*B*Q = D2*( 0 R )
where U, V and Q are orthogonal matrices.
Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T,
then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
D2 are M-by-(K+L) and P-by-(K+L) 'diagonal' matrices and of the
following structures, respectively:
If M-K-L >= 0,
K L
D1 = K ( I 0 )
L ( 0 C )
M-K-L ( 0 0 )
K L
D2 = L ( 0 S )
P-L ( 0 0 )
N-K-L K L
( 0 R ) = K ( 0 R11 R12 )
L ( 0 0 R22 )
where
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
S = diag( BETA(K+1), ... , BETA(K+L) ),
C**2 + S**2 = I.
R is stored in A(1:K+L,N-K-L+1:N) on exit.
If M-K-L < 0,
K M-K K+L-M
D1 = K ( I 0 0 )
M-K ( 0 C 0 )
K M-K K+L-M
D2 = M-K ( 0 S 0 )
K+L-M ( 0 0 I )
P-L ( 0 0 0 )
N-K-L K M-K K+L-M
( 0 R ) = K ( 0 R11 R12 R13 )
M-K ( 0 0 R22 R23 )
K+L-M ( 0 0 0 R33 )
where
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
S = diag( BETA(K+1), ... , BETA(M) ),
C**2 + S**2 = I.
(R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
( 0 R22 R23 )
in B(M-K+1:L,N+M-K-L+1:N) on exit.
The routine computes C, S, R, and optionally the orthogonal
transformation matrices U, V and Q.
In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
A and B implicitly gives the SVD of A*inv(B):
A*inv(B) = U*(D1*inv(D2))*V**T.
If ( A**T,B**T)**T has orthonormal columns, then the GSVD of A and B is
also equal to the CS decomposition of A and B. Furthermore, the GSVD
can be used to derive the solution of the eigenvalue problem:
A**T*A x = lambda* B**T*B x.
In some literature, the GSVD of A and B is presented in the form
U**T*A*X = ( 0 D1 ), V**T*B*X = ( 0 D2 )
where U and V are orthogonal and X is nonsingular, D1 and D2 are
``diagonal''. The former GSVD form can be converted to the latter
form by taking the nonsingular matrix X as
X = Q*( I 0 )
( 0 inv(R) ).

Parameters

JOBU


JOBU is CHARACTER*1
= 'U': Orthogonal matrix U is computed;
= 'N': U is not computed.

JOBV


JOBV is CHARACTER*1
= 'V': Orthogonal matrix V is computed;
= 'N': V is not computed.

JOBQ


JOBQ is CHARACTER*1
= 'Q': Orthogonal matrix Q is computed;
= 'N': Q is not computed.

M


M is INTEGER
The number of rows of the matrix A. M >= 0.

N


N is INTEGER
The number of columns of the matrices A and B. N >= 0.

P


P is INTEGER
The number of rows of the matrix B. P >= 0.

K


K is INTEGER

L


L is INTEGER
On exit, K and L specify the dimension of the subblocks
described in Purpose.
K + L = effective numerical rank of (A**T,B**T)**T.

A


A is REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A contains the triangular matrix R, or part of R.
See Purpose for details.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

B


B is REAL array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, B contains the triangular matrix R if M-K-L < 0.
See Purpose for details.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,P).

ALPHA


ALPHA is REAL array, dimension (N)

BETA


BETA is REAL array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular
value pairs of A and B;
ALPHA(1:K) = 1,
BETA(1:K) = 0,
and if M-K-L >= 0,
ALPHA(K+1:K+L) = C,
BETA(K+1:K+L) = S,
or if M-K-L < 0,
ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
BETA(K+1:M) =S, BETA(M+1:K+L) =1
and
ALPHA(K+L+1:N) = 0
BETA(K+L+1:N) = 0

U


U is REAL array, dimension (LDU,M)
If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
If JOBU = 'N', U is not referenced.

LDU


LDU is INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.

V


V is REAL array, dimension (LDV,P)
If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
If JOBV = 'N', V is not referenced.

LDV


LDV is INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.

Q


Q is REAL array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
If JOBQ = 'N', Q is not referenced.

LDQ


LDQ is INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.

WORK


WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

IWORK


IWORK is INTEGER array, dimension (N)
On exit, IWORK stores the sorting information. More
precisely, the following loop will sort ALPHA
for I = K+1, min(M,K+L)
swap ALPHA(I) and ALPHA(IWORK(I))
endfor
such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).

INFO


INFO is INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, the Jacobi-type procedure failed to
converge. For further details, see subroutine STGSJA.

Internal Parameters:


TOLA REAL
TOLB REAL
TOLA and TOLB are the thresholds to determine the effective
rank of (A**T,B**T)**T. Generally, they are set to
TOLA = MAX(M,N)*norm(A)*MACHEPS,
TOLB = MAX(P,N)*norm(B)*MACHEPS.
The size of TOLA and TOLB may affect the size of backward
errors of the decomposition.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA

Further Details:

SGGSVD3 replaces the deprecated subroutine SGGSVD.

Definition at line 346 of file sggsvd3.f.

ZGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices

Purpose:


ZGGSVD3 computes the generalized singular value decomposition (GSVD)
of an M-by-N complex matrix A and P-by-N complex matrix B:
U**H*A*Q = D1*( 0 R ), V**H*B*Q = D2*( 0 R )
where U, V and Q are unitary matrices.
Let K+L = the effective numerical rank of the
matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) 'diagonal'
matrices and of the following structures, respectively:
If M-K-L >= 0,
K L
D1 = K ( I 0 )
L ( 0 C )
M-K-L ( 0 0 )
K L
D2 = L ( 0 S )
P-L ( 0 0 )
N-K-L K L
( 0 R ) = K ( 0 R11 R12 )
L ( 0 0 R22 )
where
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
S = diag( BETA(K+1), ... , BETA(K+L) ),
C**2 + S**2 = I.
R is stored in A(1:K+L,N-K-L+1:N) on exit.
If M-K-L < 0,
K M-K K+L-M
D1 = K ( I 0 0 )
M-K ( 0 C 0 )
K M-K K+L-M
D2 = M-K ( 0 S 0 )
K+L-M ( 0 0 I )
P-L ( 0 0 0 )
N-K-L K M-K K+L-M
( 0 R ) = K ( 0 R11 R12 R13 )
M-K ( 0 0 R22 R23 )
K+L-M ( 0 0 0 R33 )
where
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
S = diag( BETA(K+1), ... , BETA(M) ),
C**2 + S**2 = I.
(R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
( 0 R22 R23 )
in B(M-K+1:L,N+M-K-L+1:N) on exit.
The routine computes C, S, R, and optionally the unitary
transformation matrices U, V and Q.
In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
A and B implicitly gives the SVD of A*inv(B):
A*inv(B) = U*(D1*inv(D2))*V**H.
If ( A**H,B**H)**H has orthonormal columns, then the GSVD of A and B is also
equal to the CS decomposition of A and B. Furthermore, the GSVD can
be used to derive the solution of the eigenvalue problem:
A**H*A x = lambda* B**H*B x.
In some literature, the GSVD of A and B is presented in the form
U**H*A*X = ( 0 D1 ), V**H*B*X = ( 0 D2 )
where U and V are orthogonal and X is nonsingular, and D1 and D2 are
``diagonal''. The former GSVD form can be converted to the latter
form by taking the nonsingular matrix X as
X = Q*( I 0 )
( 0 inv(R) )

Parameters

JOBU


JOBU is CHARACTER*1
= 'U': Unitary matrix U is computed;
= 'N': U is not computed.

JOBV


JOBV is CHARACTER*1
= 'V': Unitary matrix V is computed;
= 'N': V is not computed.

JOBQ


JOBQ is CHARACTER*1
= 'Q': Unitary matrix Q is computed;
= 'N': Q is not computed.

M


M is INTEGER
The number of rows of the matrix A. M >= 0.

N


N is INTEGER
The number of columns of the matrices A and B. N >= 0.

P


P is INTEGER
The number of rows of the matrix B. P >= 0.

K


K is INTEGER

L


L is INTEGER
On exit, K and L specify the dimension of the subblocks
described in Purpose.
K + L = effective numerical rank of (A**H,B**H)**H.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A contains the triangular matrix R, or part of R.
See Purpose for details.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

B


B is COMPLEX*16 array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, B contains part of the triangular matrix R if
M-K-L < 0. See Purpose for details.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,P).

ALPHA


ALPHA is DOUBLE PRECISION array, dimension (N)

BETA


BETA is DOUBLE PRECISION array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular
value pairs of A and B;
ALPHA(1:K) = 1,
BETA(1:K) = 0,
and if M-K-L >= 0,
ALPHA(K+1:K+L) = C,
BETA(K+1:K+L) = S,
or if M-K-L < 0,
ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
BETA(K+1:M) =S, BETA(M+1:K+L) =1
and
ALPHA(K+L+1:N) = 0
BETA(K+L+1:N) = 0

U


U is COMPLEX*16 array, dimension (LDU,M)
If JOBU = 'U', U contains the M-by-M unitary matrix U.
If JOBU = 'N', U is not referenced.

LDU


LDU is INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.

V


V is COMPLEX*16 array, dimension (LDV,P)
If JOBV = 'V', V contains the P-by-P unitary matrix V.
If JOBV = 'N', V is not referenced.

LDV


LDV is INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.

Q


Q is COMPLEX*16 array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
If JOBQ = 'N', Q is not referenced.

LDQ


LDQ is INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.

WORK


WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

RWORK


RWORK is DOUBLE PRECISION array, dimension (2*N)

IWORK


IWORK is INTEGER array, dimension (N)
On exit, IWORK stores the sorting information. More
precisely, the following loop will sort ALPHA
for I = K+1, min(M,K+L)
swap ALPHA(I) and ALPHA(IWORK(I))
endfor
such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).

INFO


INFO is INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, the Jacobi-type procedure failed to
converge. For further details, see subroutine ZTGSJA.

Internal Parameters:


TOLA DOUBLE PRECISION
TOLB DOUBLE PRECISION
TOLA and TOLB are the thresholds to determine the effective
rank of (A**H,B**H)**H. Generally, they are set to
TOLA = MAX(M,N)*norm(A)*MACHEPS,
TOLB = MAX(P,N)*norm(B)*MACHEPS.
The size of TOLA and TOLB may affect the size of backward
errors of the decomposition.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA

Further Details:

ZGGSVD3 replaces the deprecated subroutine ZGGSVD.

Definition at line 350 of file zggsvd3.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:37 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.