 |
|
| |
gtts2 - gtts2: triangular solve using factor
subroutine cgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv,
b, ldb)
CGTTS2 solves a system of linear equations with a tridiagonal matrix
using the LU factorization computed by sgttrf. subroutine dgtts2
(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
DGTTS2 solves a system of linear equations with a tridiagonal matrix
using the LU factorization computed by sgttrf. subroutine sgtts2
(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
SGTTS2 solves a system of linear equations with a tridiagonal matrix
using the LU factorization computed by sgttrf. subroutine zgtts2
(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
ZGTTS2 solves a system of linear equations with a tridiagonal matrix
using the LU factorization computed by sgttrf.
CGTTS2 solves a system of linear equations with a
tridiagonal matrix using the LU factorization computed by sgttrf.
Purpose:
CGTTS2 solves one of the systems of equations
A * X = B, A**T * X = B, or A**H * X = B,
with a tridiagonal matrix A using the LU factorization computed
by CGTTRF.
Parameters
ITRANS
ITRANS is INTEGER
Specifies the form of the system of equations.
= 0: A * X = B (No transpose)
= 1: A**T * X = B (Transpose)
= 2: A**H * X = B (Conjugate transpose)
N
N is INTEGER
The order of the matrix A.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL
DL is COMPLEX array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.
D
D is COMPLEX array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU
DU is COMPLEX array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.
DU2
DU2 is COMPLEX array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.
IPIV
IPIV is INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B
B is COMPLEX array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 127 of file cgtts2.f.
DGTTS2 solves a system of linear equations with a
tridiagonal matrix using the LU factorization computed by sgttrf.
Purpose:
DGTTS2 solves one of the systems of equations
A*X = B or A**T*X = B,
with a tridiagonal matrix A using the LU factorization computed
by DGTTRF.
Parameters
ITRANS
ITRANS is INTEGER
Specifies the form of the system of equations.
= 0: A * X = B (No transpose)
= 1: A**T* X = B (Transpose)
= 2: A**T* X = B (Conjugate transpose = Transpose)
N
N is INTEGER
The order of the matrix A.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL
DL is DOUBLE PRECISION array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.
D
D is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU
DU is DOUBLE PRECISION array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.
DU2
DU2 is DOUBLE PRECISION array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.
IPIV
IPIV is INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 127 of file dgtts2.f.
SGTTS2 solves a system of linear equations with a
tridiagonal matrix using the LU factorization computed by sgttrf.
Purpose:
SGTTS2 solves one of the systems of equations
A*X = B or A**T*X = B,
with a tridiagonal matrix A using the LU factorization computed
by SGTTRF.
Parameters
ITRANS
ITRANS is INTEGER
Specifies the form of the system of equations.
= 0: A * X = B (No transpose)
= 1: A**T* X = B (Transpose)
= 2: A**T* X = B (Conjugate transpose = Transpose)
N
N is INTEGER
The order of the matrix A.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL
DL is REAL array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.
D
D is REAL array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU
DU is REAL array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.
DU2
DU2 is REAL array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.
IPIV
IPIV is INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B
B is REAL array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 127 of file sgtts2.f.
ZGTTS2 solves a system of linear equations with a
tridiagonal matrix using the LU factorization computed by sgttrf.
Purpose:
ZGTTS2 solves one of the systems of equations
A * X = B, A**T * X = B, or A**H * X = B,
with a tridiagonal matrix A using the LU factorization computed
by ZGTTRF.
Parameters
ITRANS
ITRANS is INTEGER
Specifies the form of the system of equations.
= 0: A * X = B (No transpose)
= 1: A**T * X = B (Transpose)
= 2: A**H * X = B (Conjugate transpose)
N
N is INTEGER
The order of the matrix A.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL
DL is COMPLEX*16 array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.
D
D is COMPLEX*16 array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU
DU is COMPLEX*16 array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.
DU2
DU2 is COMPLEX*16 array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.
IPIV
IPIV is INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B
B is COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 127 of file zgtts2.f.
Generated automatically by Doxygen for LAPACK from the source
code.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc.
|