 |
|
| |
hbev - {hb,sb}ev: eig, QR iteration
subroutine chbev (jobz, uplo, n, kd, ab, ldab, w, z, ldz,
work, rwork, info)
CHBEV computes the eigenvalues and, optionally, the left and/or right
eigenvectors for OTHER matrices subroutine dsbev (jobz, uplo, n,
kd, ab, ldab, w, z, ldz, work, info)
DSBEV computes the eigenvalues and, optionally, the left and/or right
eigenvectors for OTHER matrices subroutine ssbev (jobz, uplo, n,
kd, ab, ldab, w, z, ldz, work, info)
SSBEV computes the eigenvalues and, optionally, the left and/or right
eigenvectors for OTHER matrices subroutine zhbev (jobz, uplo, n,
kd, ab, ldab, w, z, ldz, work, rwork, info)
ZHBEV computes the eigenvalues and, optionally, the left and/or right
eigenvectors for OTHER matrices
CHBEV computes the eigenvalues and, optionally, the left
and/or right eigenvectors for OTHER matrices
Purpose:
CHBEV computes all the eigenvalues and, optionally, eigenvectors of
a complex Hermitian band matrix A.
Parameters
JOBZ
JOBZ is CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB
AB is COMPLEX array, dimension (LDAB, N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T
are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
the diagonal and first subdiagonal of T are returned in the
first two rows of AB.
LDAB
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
W
W is REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z
Z is COMPLEX array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ
LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK
WORK is COMPLEX array, dimension (N)
RWORK
RWORK is REAL array, dimension (max(1,3*N-2))
INFO
INFO is INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 150 of file chbev.f.
DSBEV computes the eigenvalues and, optionally, the left
and/or right eigenvectors for OTHER matrices
Purpose:
DSBEV computes all the eigenvalues and, optionally, eigenvectors of
a real symmetric band matrix A.
Parameters
JOBZ
JOBZ is CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB
AB is DOUBLE PRECISION array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T
are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
the diagonal and first subdiagonal of T are returned in the
first two rows of AB.
LDAB
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
W
W is DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z
Z is DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ
LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK
WORK is DOUBLE PRECISION array, dimension (max(1,3*N-2))
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 144 of file dsbev.f.
SSBEV computes the eigenvalues and, optionally, the left
and/or right eigenvectors for OTHER matrices
Purpose:
SSBEV computes all the eigenvalues and, optionally, eigenvectors of
a real symmetric band matrix A.
Parameters
JOBZ
JOBZ is CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB
AB is REAL array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T
are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
the diagonal and first subdiagonal of T are returned in the
first two rows of AB.
LDAB
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
W
W is REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z
Z is REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ
LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK
WORK is REAL array, dimension (max(1,3*N-2))
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 144 of file ssbev.f.
ZHBEV computes the eigenvalues and, optionally, the left
and/or right eigenvectors for OTHER matrices
Purpose:
ZHBEV computes all the eigenvalues and, optionally, eigenvectors of
a complex Hermitian band matrix A.
Parameters
JOBZ
JOBZ is CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB
AB is COMPLEX*16 array, dimension (LDAB, N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T
are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
the diagonal and first subdiagonal of T are returned in the
first two rows of AB.
LDAB
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
W
W is DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z
Z is COMPLEX*16 array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ
LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK
WORK is COMPLEX*16 array, dimension (N)
RWORK
RWORK is DOUBLE PRECISION array, dimension (max(1,3*N-2))
INFO
INFO is INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 150 of file zhbev.f.
Generated automatically by Doxygen for LAPACK from the source
code.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc.
|