GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
hbgst(3) LAPACK hbgst(3)

hbgst - {hb,sb}gst: reduction to standard form, banded


subroutine chbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, rwork, info)
CHBGST subroutine dsbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, info)
DSBGST subroutine ssbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, info)
SSBGST subroutine zhbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, rwork, info)
ZHBGST

CHBGST

Purpose:


CHBGST reduces a complex Hermitian-definite banded generalized
eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,
such that C has the same bandwidth as A.
B must have been previously factorized as S**H*S by CPBSTF, using a
split Cholesky factorization. A is overwritten by C = X**H*A*X, where
X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the
bandwidth of A.

Parameters

VECT


VECT is CHARACTER*1
= 'N': do not form the transformation matrix X;
= 'V': form X.

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The order of the matrices A and B. N >= 0.

KA


KA is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.

KB


KB is INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0.

AB


AB is COMPLEX array, dimension (LDAB,N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the transformed matrix X**H*A*X, stored in the same
format as A.

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KA+1.

BB


BB is COMPLEX array, dimension (LDBB,N)
The banded factor S from the split Cholesky factorization of
B, as returned by CPBSTF, stored in the first kb+1 rows of
the array.

LDBB


LDBB is INTEGER
The leading dimension of the array BB. LDBB >= KB+1.

X


X is COMPLEX array, dimension (LDX,N)
If VECT = 'V', the n-by-n matrix X.
If VECT = 'N', the array X is not referenced.

LDX


LDX is INTEGER
The leading dimension of the array X.
LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.

WORK


WORK is COMPLEX array, dimension (N)

RWORK


RWORK is REAL array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 163 of file chbgst.f.

DSBGST

Purpose:


DSBGST reduces a real symmetric-definite banded generalized
eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,
such that C has the same bandwidth as A.
B must have been previously factorized as S**T*S by DPBSTF, using a
split Cholesky factorization. A is overwritten by C = X**T*A*X, where
X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the
bandwidth of A.

Parameters

VECT


VECT is CHARACTER*1
= 'N': do not form the transformation matrix X;
= 'V': form X.

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The order of the matrices A and B. N >= 0.

KA


KA is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.

KB


KB is INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0.

AB


AB is DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the transformed matrix X**T*A*X, stored in the same
format as A.

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KA+1.

BB


BB is DOUBLE PRECISION array, dimension (LDBB,N)
The banded factor S from the split Cholesky factorization of
B, as returned by DPBSTF, stored in the first KB+1 rows of
the array.

LDBB


LDBB is INTEGER
The leading dimension of the array BB. LDBB >= KB+1.

X


X is DOUBLE PRECISION array, dimension (LDX,N)
If VECT = 'V', the n-by-n matrix X.
If VECT = 'N', the array X is not referenced.

LDX


LDX is INTEGER
The leading dimension of the array X.
LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.

WORK


WORK is DOUBLE PRECISION array, dimension (2*N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 157 of file dsbgst.f.

SSBGST

Purpose:


SSBGST reduces a real symmetric-definite banded generalized
eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,
such that C has the same bandwidth as A.
B must have been previously factorized as S**T*S by SPBSTF, using a
split Cholesky factorization. A is overwritten by C = X**T*A*X, where
X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the
bandwidth of A.

Parameters

VECT


VECT is CHARACTER*1
= 'N': do not form the transformation matrix X;
= 'V': form X.

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The order of the matrices A and B. N >= 0.

KA


KA is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.

KB


KB is INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0.

AB


AB is REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the transformed matrix X**T*A*X, stored in the same
format as A.

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KA+1.

BB


BB is REAL array, dimension (LDBB,N)
The banded factor S from the split Cholesky factorization of
B, as returned by SPBSTF, stored in the first KB+1 rows of
the array.

LDBB


LDBB is INTEGER
The leading dimension of the array BB. LDBB >= KB+1.

X


X is REAL array, dimension (LDX,N)
If VECT = 'V', the n-by-n matrix X.
If VECT = 'N', the array X is not referenced.

LDX


LDX is INTEGER
The leading dimension of the array X.
LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.

WORK


WORK is REAL array, dimension (2*N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 157 of file ssbgst.f.

ZHBGST

Purpose:


ZHBGST reduces a complex Hermitian-definite banded generalized
eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,
such that C has the same bandwidth as A.
B must have been previously factorized as S**H*S by ZPBSTF, using a
split Cholesky factorization. A is overwritten by C = X**H*A*X, where
X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the
bandwidth of A.

Parameters

VECT


VECT is CHARACTER*1
= 'N': do not form the transformation matrix X;
= 'V': form X.

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The order of the matrices A and B. N >= 0.

KA


KA is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.

KB


KB is INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0.

AB


AB is COMPLEX*16 array, dimension (LDAB,N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the transformed matrix X**H*A*X, stored in the same
format as A.

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KA+1.

BB


BB is COMPLEX*16 array, dimension (LDBB,N)
The banded factor S from the split Cholesky factorization of
B, as returned by ZPBSTF, stored in the first kb+1 rows of
the array.

LDBB


LDBB is INTEGER
The leading dimension of the array BB. LDBB >= KB+1.

X


X is COMPLEX*16 array, dimension (LDX,N)
If VECT = 'V', the n-by-n matrix X.
If VECT = 'N', the array X is not referenced.

LDX


LDX is INTEGER
The leading dimension of the array X.
LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.

WORK


WORK is COMPLEX*16 array, dimension (N)

RWORK


RWORK is DOUBLE PRECISION array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 163 of file zhbgst.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:37 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.