 |
|
| |
hbtrd - {hb,sb}trd: reduction to tridiagonal
subroutine chbtrd (vect, uplo, n, kd, ab, ldab, d, e, q,
ldq, work, info)
CHBTRD subroutine dsbtrd (vect, uplo, n, kd, ab, ldab, d, e, q,
ldq, work, info)
DSBTRD subroutine ssbtrd (vect, uplo, n, kd, ab, ldab, d, e, q,
ldq, work, info)
SSBTRD subroutine zhbtrd (vect, uplo, n, kd, ab, ldab, d, e, q,
ldq, work, info)
ZHBTRD
CHBTRD
Purpose:
CHBTRD reduces a complex Hermitian band matrix A to real symmetric
tridiagonal form T by a unitary similarity transformation:
Q**H * A * Q = T.
Parameters
VECT
VECT is CHARACTER*1
= 'N': do not form Q;
= 'V': form Q;
= 'U': update a matrix X, by forming X*Q.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB
AB is COMPLEX array, dimension (LDAB,N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, the diagonal elements of AB are overwritten by the
diagonal elements of the tridiagonal matrix T; if KD > 0, the
elements on the first superdiagonal (if UPLO = 'U') or the
first subdiagonal (if UPLO = 'L') are overwritten by the
off-diagonal elements of T; the rest of AB is overwritten by
values generated during the reduction.
LDAB
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
D
D is REAL array, dimension (N)
The diagonal elements of the tridiagonal matrix T.
E
E is REAL array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
Q
Q is COMPLEX array, dimension (LDQ,N)
On entry, if VECT = 'U', then Q must contain an N-by-N
matrix X; if VECT = 'N' or 'V', then Q need not be set.
On exit:
if VECT = 'V', Q contains the N-by-N unitary matrix Q;
if VECT = 'U', Q contains the product X*Q;
if VECT = 'N', the array Q is not referenced.
LDQ
LDQ is INTEGER
The leading dimension of the array Q.
LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.
WORK
WORK is COMPLEX array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
Modified by Linda Kaufman, Bell Labs.
Definition at line 161 of file chbtrd.f.
DSBTRD
Purpose:
DSBTRD reduces a real symmetric band matrix A to symmetric
tridiagonal form T by an orthogonal similarity transformation:
Q**T * A * Q = T.
Parameters
VECT
VECT is CHARACTER*1
= 'N': do not form Q;
= 'V': form Q;
= 'U': update a matrix X, by forming X*Q.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB
AB is DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, the diagonal elements of AB are overwritten by the
diagonal elements of the tridiagonal matrix T; if KD > 0, the
elements on the first superdiagonal (if UPLO = 'U') or the
first subdiagonal (if UPLO = 'L') are overwritten by the
off-diagonal elements of T; the rest of AB is overwritten by
values generated during the reduction.
LDAB
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
D
D is DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T.
E
E is DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
Q
Q is DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if VECT = 'U', then Q must contain an N-by-N
matrix X; if VECT = 'N' or 'V', then Q need not be set.
On exit:
if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;
if VECT = 'U', Q contains the product X*Q;
if VECT = 'N', the array Q is not referenced.
LDQ
LDQ is INTEGER
The leading dimension of the array Q.
LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.
WORK
WORK is DOUBLE PRECISION array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
Modified by Linda Kaufman, Bell Labs.
Definition at line 161 of file dsbtrd.f.
SSBTRD
Purpose:
SSBTRD reduces a real symmetric band matrix A to symmetric
tridiagonal form T by an orthogonal similarity transformation:
Q**T * A * Q = T.
Parameters
VECT
VECT is CHARACTER*1
= 'N': do not form Q;
= 'V': form Q;
= 'U': update a matrix X, by forming X*Q.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB
AB is REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, the diagonal elements of AB are overwritten by the
diagonal elements of the tridiagonal matrix T; if KD > 0, the
elements on the first superdiagonal (if UPLO = 'U') or the
first subdiagonal (if UPLO = 'L') are overwritten by the
off-diagonal elements of T; the rest of AB is overwritten by
values generated during the reduction.
LDAB
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
D
D is REAL array, dimension (N)
The diagonal elements of the tridiagonal matrix T.
E
E is REAL array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
Q
Q is REAL array, dimension (LDQ,N)
On entry, if VECT = 'U', then Q must contain an N-by-N
matrix X; if VECT = 'N' or 'V', then Q need not be set.
On exit:
if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;
if VECT = 'U', Q contains the product X*Q;
if VECT = 'N', the array Q is not referenced.
LDQ
LDQ is INTEGER
The leading dimension of the array Q.
LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.
WORK
WORK is REAL array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
Modified by Linda Kaufman, Bell Labs.
Definition at line 161 of file ssbtrd.f.
ZHBTRD
Purpose:
ZHBTRD reduces a complex Hermitian band matrix A to real symmetric
tridiagonal form T by a unitary similarity transformation:
Q**H * A * Q = T.
Parameters
VECT
VECT is CHARACTER*1
= 'N': do not form Q;
= 'V': form Q;
= 'U': update a matrix X, by forming X*Q.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB
AB is COMPLEX*16 array, dimension (LDAB,N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, the diagonal elements of AB are overwritten by the
diagonal elements of the tridiagonal matrix T; if KD > 0, the
elements on the first superdiagonal (if UPLO = 'U') or the
first subdiagonal (if UPLO = 'L') are overwritten by the
off-diagonal elements of T; the rest of AB is overwritten by
values generated during the reduction.
LDAB
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
D
D is DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T.
E
E is DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
Q
Q is COMPLEX*16 array, dimension (LDQ,N)
On entry, if VECT = 'U', then Q must contain an N-by-N
matrix X; if VECT = 'N' or 'V', then Q need not be set.
On exit:
if VECT = 'V', Q contains the N-by-N unitary matrix Q;
if VECT = 'U', Q contains the product X*Q;
if VECT = 'N', the array Q is not referenced.
LDQ
LDQ is INTEGER
The leading dimension of the array Q.
LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.
WORK
WORK is COMPLEX*16 array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
Modified by Linda Kaufman, Bell Labs.
Definition at line 161 of file zhbtrd.f.
Generated automatically by Doxygen for LAPACK from the source
code.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc.
|