GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
hbtrd(3) LAPACK hbtrd(3)

hbtrd - {hb,sb}trd: reduction to tridiagonal


subroutine chbtrd (vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
CHBTRD subroutine dsbtrd (vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
DSBTRD subroutine ssbtrd (vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
SSBTRD subroutine zhbtrd (vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
ZHBTRD

CHBTRD

Purpose:


CHBTRD reduces a complex Hermitian band matrix A to real symmetric
tridiagonal form T by a unitary similarity transformation:
Q**H * A * Q = T.

Parameters

VECT


VECT is CHARACTER*1
= 'N': do not form Q;
= 'V': form Q;
= 'U': update a matrix X, by forming X*Q.

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The order of the matrix A. N >= 0.

KD


KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.

AB


AB is COMPLEX array, dimension (LDAB,N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, the diagonal elements of AB are overwritten by the
diagonal elements of the tridiagonal matrix T; if KD > 0, the
elements on the first superdiagonal (if UPLO = 'U') or the
first subdiagonal (if UPLO = 'L') are overwritten by the
off-diagonal elements of T; the rest of AB is overwritten by
values generated during the reduction.

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.

D


D is REAL array, dimension (N)
The diagonal elements of the tridiagonal matrix T.

E


E is REAL array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.

Q


Q is COMPLEX array, dimension (LDQ,N)
On entry, if VECT = 'U', then Q must contain an N-by-N
matrix X; if VECT = 'N' or 'V', then Q need not be set.
On exit:
if VECT = 'V', Q contains the N-by-N unitary matrix Q;
if VECT = 'U', Q contains the product X*Q;
if VECT = 'N', the array Q is not referenced.

LDQ


LDQ is INTEGER
The leading dimension of the array Q.
LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.

WORK


WORK is COMPLEX array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


Modified by Linda Kaufman, Bell Labs.

Definition at line 161 of file chbtrd.f.

DSBTRD

Purpose:


DSBTRD reduces a real symmetric band matrix A to symmetric
tridiagonal form T by an orthogonal similarity transformation:
Q**T * A * Q = T.

Parameters

VECT


VECT is CHARACTER*1
= 'N': do not form Q;
= 'V': form Q;
= 'U': update a matrix X, by forming X*Q.

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The order of the matrix A. N >= 0.

KD


KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.

AB


AB is DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, the diagonal elements of AB are overwritten by the
diagonal elements of the tridiagonal matrix T; if KD > 0, the
elements on the first superdiagonal (if UPLO = 'U') or the
first subdiagonal (if UPLO = 'L') are overwritten by the
off-diagonal elements of T; the rest of AB is overwritten by
values generated during the reduction.

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.

D


D is DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T.

E


E is DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.

Q


Q is DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if VECT = 'U', then Q must contain an N-by-N
matrix X; if VECT = 'N' or 'V', then Q need not be set.
On exit:
if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;
if VECT = 'U', Q contains the product X*Q;
if VECT = 'N', the array Q is not referenced.

LDQ


LDQ is INTEGER
The leading dimension of the array Q.
LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.

WORK


WORK is DOUBLE PRECISION array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


Modified by Linda Kaufman, Bell Labs.

Definition at line 161 of file dsbtrd.f.

SSBTRD

Purpose:


SSBTRD reduces a real symmetric band matrix A to symmetric
tridiagonal form T by an orthogonal similarity transformation:
Q**T * A * Q = T.

Parameters

VECT


VECT is CHARACTER*1
= 'N': do not form Q;
= 'V': form Q;
= 'U': update a matrix X, by forming X*Q.

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The order of the matrix A. N >= 0.

KD


KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.

AB


AB is REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, the diagonal elements of AB are overwritten by the
diagonal elements of the tridiagonal matrix T; if KD > 0, the
elements on the first superdiagonal (if UPLO = 'U') or the
first subdiagonal (if UPLO = 'L') are overwritten by the
off-diagonal elements of T; the rest of AB is overwritten by
values generated during the reduction.

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.

D


D is REAL array, dimension (N)
The diagonal elements of the tridiagonal matrix T.

E


E is REAL array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.

Q


Q is REAL array, dimension (LDQ,N)
On entry, if VECT = 'U', then Q must contain an N-by-N
matrix X; if VECT = 'N' or 'V', then Q need not be set.
On exit:
if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;
if VECT = 'U', Q contains the product X*Q;
if VECT = 'N', the array Q is not referenced.

LDQ


LDQ is INTEGER
The leading dimension of the array Q.
LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.

WORK


WORK is REAL array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


Modified by Linda Kaufman, Bell Labs.

Definition at line 161 of file ssbtrd.f.

ZHBTRD

Purpose:


ZHBTRD reduces a complex Hermitian band matrix A to real symmetric
tridiagonal form T by a unitary similarity transformation:
Q**H * A * Q = T.

Parameters

VECT


VECT is CHARACTER*1
= 'N': do not form Q;
= 'V': form Q;
= 'U': update a matrix X, by forming X*Q.

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The order of the matrix A. N >= 0.

KD


KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.

AB


AB is COMPLEX*16 array, dimension (LDAB,N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, the diagonal elements of AB are overwritten by the
diagonal elements of the tridiagonal matrix T; if KD > 0, the
elements on the first superdiagonal (if UPLO = 'U') or the
first subdiagonal (if UPLO = 'L') are overwritten by the
off-diagonal elements of T; the rest of AB is overwritten by
values generated during the reduction.

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.

D


D is DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T.

E


E is DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.

Q


Q is COMPLEX*16 array, dimension (LDQ,N)
On entry, if VECT = 'U', then Q must contain an N-by-N
matrix X; if VECT = 'N' or 'V', then Q need not be set.
On exit:
if VECT = 'V', Q contains the N-by-N unitary matrix Q;
if VECT = 'U', Q contains the product X*Q;
if VECT = 'N', the array Q is not referenced.

LDQ


LDQ is INTEGER
The leading dimension of the array Q.
LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.

WORK


WORK is COMPLEX*16 array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


Modified by Linda Kaufman, Bell Labs.

Definition at line 161 of file zhbtrd.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:37 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.