GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
hetrs_rook(3) LAPACK hetrs_rook(3)

hetrs_rook - {he,sy}trs_rook: triangular solve using factor


subroutine chetrs_rook (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using factorization obtained with one of the bounded diagonal pivoting methods (max 2 interchanges) subroutine csytrs_rook (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CSYTRS_ROOK subroutine dsytrs_rook (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
DSYTRS_ROOK subroutine ssytrs_rook (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
SSYTRS_ROOK subroutine zhetrs_rook (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using factorization obtained with one of the bounded diagonal pivoting methods (max 2 interchanges) subroutine zsytrs_rook (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZSYTRS_ROOK

CHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using factorization obtained with one of the bounded diagonal pivoting methods (max 2 interchanges)

Purpose:


CHETRS_ROOK solves a system of linear equations A*X = B with a complex
Hermitian matrix A using the factorization A = U*D*U**H or
A = L*D*L**H computed by CHETRF_ROOK.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**H;
= 'L': Lower triangular, form is A = L*D*L**H.

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

A


A is COMPLEX array, dimension (LDA,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by CHETRF_ROOK.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by CHETRF_ROOK.

B


B is COMPLEX array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:


November 2013, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester

Definition at line 134 of file chetrs_rook.f.

CSYTRS_ROOK

Purpose:


CSYTRS_ROOK solves a system of linear equations A*X = B with
a complex symmetric matrix A using the factorization A = U*D*U**T or
A = L*D*L**T computed by CSYTRF_ROOK.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

A


A is COMPLEX array, dimension (LDA,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by CSYTRF_ROOK.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by CSYTRF_ROOK.

B


B is COMPLEX array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:


December 2016, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester

Definition at line 134 of file csytrs_rook.f.

DSYTRS_ROOK

Purpose:


DSYTRS_ROOK solves a system of linear equations A*X = B with
a real symmetric matrix A using the factorization A = U*D*U**T or
A = L*D*L**T computed by DSYTRF_ROOK.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by DSYTRF_ROOK.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSYTRF_ROOK.

B


B is DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:


April 2012, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester

Definition at line 134 of file dsytrs_rook.f.

SSYTRS_ROOK

Purpose:


SSYTRS_ROOK solves a system of linear equations A*X = B with
a real symmetric matrix A using the factorization A = U*D*U**T or
A = L*D*L**T computed by SSYTRF_ROOK.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

A


A is REAL array, dimension (LDA,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by SSYTRF_ROOK.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSYTRF_ROOK.

B


B is REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:


April 2012, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester

Definition at line 134 of file ssytrs_rook.f.

ZHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using factorization obtained with one of the bounded diagonal pivoting methods (max 2 interchanges)

Purpose:


ZHETRS_ROOK solves a system of linear equations A*X = B with a complex
Hermitian matrix A using the factorization A = U*D*U**H or
A = L*D*L**H computed by ZHETRF_ROOK.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**H;
= 'L': Lower triangular, form is A = L*D*L**H.

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by ZHETRF_ROOK.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by ZHETRF_ROOK.

B


B is COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:


November 2013, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester

Definition at line 134 of file zhetrs_rook.f.

ZSYTRS_ROOK

Purpose:


ZSYTRS_ROOK solves a system of linear equations A*X = B with
a complex symmetric matrix A using the factorization A = U*D*U**T or
A = L*D*L**T computed by ZSYTRF_ROOK.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by ZSYTRF_ROOK.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by ZSYTRF_ROOK.

B


B is COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:


December 2016, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester

Definition at line 134 of file zsytrs_rook.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:36 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.