GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
la_gbamv(3) LAPACK la_gbamv(3)

la_gbamv - la_gbamv: matrix-vector multiply |A| * |x|, general banded


subroutine cla_gbamv (trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)
CLA_GBAMV performs a matrix-vector operation to calculate error bounds. subroutine dla_gbamv (trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)
DLA_GBAMV performs a matrix-vector operation to calculate error bounds. subroutine sla_gbamv (trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)
SLA_GBAMV performs a matrix-vector operation to calculate error bounds. subroutine zla_gbamv (trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)
ZLA_GBAMV performs a matrix-vector operation to calculate error bounds.

CLA_GBAMV performs a matrix-vector operation to calculate error bounds.

Purpose:


CLA_GBAMV performs one of the matrix-vector operations
y := alpha*abs(A)*abs(x) + beta*abs(y),
or y := alpha*abs(A)**T*abs(x) + beta*abs(y),
where alpha and beta are scalars, x and y are vectors and A is an
m by n matrix.
This function is primarily used in calculating error bounds.
To protect against underflow during evaluation, components in
the resulting vector are perturbed away from zero by (N+1)
times the underflow threshold. To prevent unnecessarily large
errors for block-structure embedded in general matrices,
'symbolically' zero components are not perturbed. A zero
entry is considered 'symbolic' if all multiplications involved
in computing that entry have at least one zero multiplicand.

Parameters

TRANS


TRANS is INTEGER
On entry, TRANS specifies the operation to be performed as
follows:
BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
Unchanged on exit.

M


M is INTEGER
On entry, M specifies the number of rows of the matrix A.
M must be at least zero.
Unchanged on exit.

N


N is INTEGER
On entry, N specifies the number of columns of the matrix A.
N must be at least zero.
Unchanged on exit.

KL


KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.

KU


KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.

ALPHA


ALPHA is REAL
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.

AB


AB is COMPLEX array, dimension (LDAB,n)
Before entry, the leading m by n part of the array AB must
contain the matrix of coefficients.
Unchanged on exit.

LDAB


LDAB is INTEGER
On entry, LDAB specifies the first dimension of AB as declared
in the calling (sub) program. LDAB must be at least
max( 1, m ).
Unchanged on exit.

X


X is COMPLEX array, dimension
( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
Before entry, the incremented array X must contain the
vector x.
Unchanged on exit.

INCX


INCX is INTEGER
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
Unchanged on exit.

BETA


BETA is REAL
On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then Y need not be set on input.
Unchanged on exit.

Y


Y is REAL array, dimension
( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
Before entry with BETA non-zero, the incremented array Y
must contain the vector y. On exit, Y is overwritten by the
updated vector y.
If either m or n is zero, then Y not referenced and the function
performs a quick return.

INCY


INCY is INTEGER
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.
Unchanged on exit.
Level 2 Blas routine.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 186 of file cla_gbamv.f.

DLA_GBAMV performs a matrix-vector operation to calculate error bounds.

Purpose:


DLA_GBAMV performs one of the matrix-vector operations
y := alpha*abs(A)*abs(x) + beta*abs(y),
or y := alpha*abs(A)**T*abs(x) + beta*abs(y),
where alpha and beta are scalars, x and y are vectors and A is an
m by n matrix.
This function is primarily used in calculating error bounds.
To protect against underflow during evaluation, components in
the resulting vector are perturbed away from zero by (N+1)
times the underflow threshold. To prevent unnecessarily large
errors for block-structure embedded in general matrices,
'symbolically' zero components are not perturbed. A zero
entry is considered 'symbolic' if all multiplications involved
in computing that entry have at least one zero multiplicand.

Parameters

TRANS


TRANS is INTEGER
On entry, TRANS specifies the operation to be performed as
follows:
BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
Unchanged on exit.

M


M is INTEGER
On entry, M specifies the number of rows of the matrix A.
M must be at least zero.
Unchanged on exit.

N


N is INTEGER
On entry, N specifies the number of columns of the matrix A.
N must be at least zero.
Unchanged on exit.

KL


KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.

KU


KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.

ALPHA


ALPHA is DOUBLE PRECISION
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.

AB


AB is DOUBLE PRECISION array, dimension ( LDAB, n )
Before entry, the leading m by n part of the array AB must
contain the matrix of coefficients.
Unchanged on exit.

LDAB


LDAB is INTEGER
On entry, LDA specifies the first dimension of AB as declared
in the calling (sub) program. LDAB must be at least
max( 1, m ).
Unchanged on exit.

X


X is DOUBLE PRECISION array, dimension
( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
Before entry, the incremented array X must contain the
vector x.
Unchanged on exit.

INCX


INCX is INTEGER
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
Unchanged on exit.

BETA


BETA is DOUBLE PRECISION
On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then Y need not be set on input.
Unchanged on exit.

Y


Y is DOUBLE PRECISION array, dimension
( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
Before entry with BETA non-zero, the incremented array Y
must contain the vector y. On exit, Y is overwritten by the
updated vector y.
If either m or n is zero, then Y not referenced and the function
performs a quick return.

INCY


INCY is INTEGER
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.
Unchanged on exit.
Level 2 Blas routine.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 185 of file dla_gbamv.f.

SLA_GBAMV performs a matrix-vector operation to calculate error bounds.

Purpose:


SLA_GBAMV performs one of the matrix-vector operations
y := alpha*abs(A)*abs(x) + beta*abs(y),
or y := alpha*abs(A)**T*abs(x) + beta*abs(y),
where alpha and beta are scalars, x and y are vectors and A is an
m by n matrix.
This function is primarily used in calculating error bounds.
To protect against underflow during evaluation, components in
the resulting vector are perturbed away from zero by (N+1)
times the underflow threshold. To prevent unnecessarily large
errors for block-structure embedded in general matrices,
'symbolically' zero components are not perturbed. A zero
entry is considered 'symbolic' if all multiplications involved
in computing that entry have at least one zero multiplicand.

Parameters

TRANS


TRANS is INTEGER
On entry, TRANS specifies the operation to be performed as
follows:
BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
Unchanged on exit.

M


M is INTEGER
On entry, M specifies the number of rows of the matrix A.
M must be at least zero.
Unchanged on exit.

N


N is INTEGER
On entry, N specifies the number of columns of the matrix A.
N must be at least zero.
Unchanged on exit.

KL


KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.

KU


KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.

ALPHA


ALPHA is REAL
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.

AB


AB is REAL array, dimension ( LDAB, n )
Before entry, the leading m by n part of the array AB must
contain the matrix of coefficients.
Unchanged on exit.

LDAB


LDAB is INTEGER
On entry, LDA specifies the first dimension of AB as declared
in the calling (sub) program. LDAB must be at least
max( 1, m ).
Unchanged on exit.

X


X is REAL array, dimension
( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
Before entry, the incremented array X must contain the
vector x.
Unchanged on exit.

INCX


INCX is INTEGER
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
Unchanged on exit.

BETA


BETA is REAL
On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then Y need not be set on input.
Unchanged on exit.

Y


Y is REAL array, dimension
( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
Before entry with BETA non-zero, the incremented array Y
must contain the vector y. On exit, Y is overwritten by the
updated vector y.
If either m or n is zero, then Y not referenced and the function
performs a quick return.

INCY


INCY is INTEGER
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.
Unchanged on exit.
Level 2 Blas routine.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 185 of file sla_gbamv.f.

ZLA_GBAMV performs a matrix-vector operation to calculate error bounds.

Purpose:


ZLA_GBAMV performs one of the matrix-vector operations
y := alpha*abs(A)*abs(x) + beta*abs(y),
or y := alpha*abs(A)**T*abs(x) + beta*abs(y),
where alpha and beta are scalars, x and y are vectors and A is an
m by n matrix.
This function is primarily used in calculating error bounds.
To protect against underflow during evaluation, components in
the resulting vector are perturbed away from zero by (N+1)
times the underflow threshold. To prevent unnecessarily large
errors for block-structure embedded in general matrices,
'symbolically' zero components are not perturbed. A zero
entry is considered 'symbolic' if all multiplications involved
in computing that entry have at least one zero multiplicand.

Parameters

TRANS


TRANS is INTEGER
On entry, TRANS specifies the operation to be performed as
follows:
BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
Unchanged on exit.

M


M is INTEGER
On entry, M specifies the number of rows of the matrix A.
M must be at least zero.
Unchanged on exit.

N


N is INTEGER
On entry, N specifies the number of columns of the matrix A.
N must be at least zero.
Unchanged on exit.

KL


KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.

KU


KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.

ALPHA


ALPHA is DOUBLE PRECISION
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.

AB


AB is COMPLEX*16 array, dimension ( LDAB, n )
Before entry, the leading m by n part of the array AB must
contain the matrix of coefficients.
Unchanged on exit.

LDAB


LDAB is INTEGER
On entry, LDAB specifies the first dimension of AB as declared
in the calling (sub) program. LDAB must be at least
max( 1, m ).
Unchanged on exit.

X


X is COMPLEX*16 array, dimension
( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
Before entry, the incremented array X must contain the
vector x.
Unchanged on exit.

INCX


INCX is INTEGER
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
Unchanged on exit.

BETA


BETA is DOUBLE PRECISION
On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then Y need not be set on input.
Unchanged on exit.

Y


Y is DOUBLE PRECISION array, dimension
( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
Before entry with BETA non-zero, the incremented array Y
must contain the vector y. On exit, Y is overwritten by the
updated vector y.
If either m or n is zero, then Y not referenced and the function
performs a quick return.

INCY


INCY is INTEGER
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.
Unchanged on exit.
Level 2 Blas routine.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 186 of file zla_gbamv.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:37 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.