GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
la_gbrpvgrw(3) LAPACK la_gbrpvgrw(3)

la_gbrpvgrw - la_gbrpvgrw: reciprocal pivot growth


real function cla_gbrpvgrw (n, kl, ku, ncols, ab, ldab, afb, ldafb)
CLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix. double precision function dla_gbrpvgrw (n, kl, ku, ncols, ab, ldab, afb, ldafb)
DLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix. real function sla_gbrpvgrw (n, kl, ku, ncols, ab, ldab, afb, ldafb)
SLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix. double precision function zla_gbrpvgrw (n, kl, ku, ncols, ab, ldab, afb, ldafb)
ZLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.

CLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.

Purpose:


CLA_GBRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

KL


KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.

KU


KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.

NCOLS


NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.

AB


AB is COMPLEX array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.

AFB


AFB is COMPLEX array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as
computed by CGBTRF. U is stored as an upper triangular
band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
and the multipliers used during the factorization are stored
in rows KL+KU+2 to 2*KL+KU+1.

LDAFB


LDAFB is INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 115 of file cla_gbrpvgrw.f.

DLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.

Purpose:


DLA_GBRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

KL


KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.

KU


KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.

NCOLS


NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.

AB


AB is DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.

AFB


AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as
computed by DGBTRF. U is stored as an upper triangular
band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
and the multipliers used during the factorization are stored
in rows KL+KU+2 to 2*KL+KU+1.

LDAFB


LDAFB is INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 115 of file dla_gbrpvgrw.f.

SLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.

Purpose:


SLA_GBRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

KL


KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.

KU


KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.

NCOLS


NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.

AB


AB is REAL array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.

AFB


AFB is REAL array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as
computed by SGBTRF. U is stored as an upper triangular
band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
and the multipliers used during the factorization are stored
in rows KL+KU+2 to 2*KL+KU+1.

LDAFB


LDAFB is INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 115 of file sla_gbrpvgrw.f.

ZLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.

Purpose:


ZLA_GBRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

KL


KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.

KU


KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.

NCOLS


NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.

AB


AB is COMPLEX*16 array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.

AFB


AFB is COMPLEX*16 array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as
computed by ZGBTRF. U is stored as an upper triangular
band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
and the multipliers used during the factorization are stored
in rows KL+KU+2 to 2*KL+KU+1.

LDAFB


LDAFB is INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 115 of file zla_gbrpvgrw.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:35 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.