GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
la_herpvgrw(3) LAPACK la_herpvgrw(3)

la_herpvgrw - la_herpvgrw: reciprocal pivot growth


real function cla_herpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work)
CLA_HERPVGRW real function cla_syrpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work)
CLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix. double precision function dla_syrpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work)
DLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix. real function sla_syrpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work)
SLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix. double precision function zla_herpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work)
ZLA_HERPVGRW double precision function zla_syrpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work)
ZLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.

CLA_HERPVGRW

Purpose:


CLA_HERPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

INFO


INFO is INTEGER
The value of INFO returned from SSYTRF, .i.e., the pivot in
column INFO is exactly 0.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is COMPLEX array, dimension (LDAF,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by CHETRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by CHETRF.

WORK


WORK is REAL array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 121 of file cla_herpvgrw.f.

CLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.

Purpose:


CLA_SYRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

INFO


INFO is INTEGER
The value of INFO returned from CSYTRF, .i.e., the pivot in
column INFO is exactly 0.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is COMPLEX array, dimension (LDAF,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by CSYTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by CSYTRF.

WORK


WORK is REAL array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 121 of file cla_syrpvgrw.f.

DLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.

Purpose:


DLA_SYRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

INFO


INFO is INTEGER
The value of INFO returned from DSYTRF, .i.e., the pivot in
column INFO is exactly 0.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is DOUBLE PRECISION array, dimension (LDAF,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by DSYTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSYTRF.

WORK


WORK is DOUBLE PRECISION array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 120 of file dla_syrpvgrw.f.

SLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.

Purpose:


SLA_SYRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

INFO


INFO is INTEGER
The value of INFO returned from SSYTRF, .i.e., the pivot in
column INFO is exactly 0.

A


A is REAL array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is REAL array, dimension (LDAF,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by SSYTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSYTRF.

WORK


WORK is REAL array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 120 of file sla_syrpvgrw.f.

ZLA_HERPVGRW

Purpose:


ZLA_HERPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

INFO


INFO is INTEGER
The value of INFO returned from ZHETRF, .i.e., the pivot in
column INFO is exactly 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is COMPLEX*16 array, dimension (LDAF,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by ZHETRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by ZHETRF.

WORK


WORK is DOUBLE PRECISION array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 121 of file zla_herpvgrw.f.

ZLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.

Purpose:


ZLA_SYRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

INFO


INFO is INTEGER
The value of INFO returned from ZSYTRF, .i.e., the pivot in
column INFO is exactly 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is COMPLEX*16 array, dimension (LDAF,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by ZSYTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by ZSYTRF.

WORK


WORK is DOUBLE PRECISION array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 121 of file zla_syrpvgrw.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:36 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.