GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
la_porpvgrw(3) LAPACK la_porpvgrw(3)

la_porpvgrw - la_porpvgrw: reciprocal pivot growth


real function cla_porpvgrw (uplo, ncols, a, lda, af, ldaf, work)
CLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix. double precision function dla_porpvgrw (uplo, ncols, a, lda, af, ldaf, work)
DLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix. real function sla_porpvgrw (uplo, ncols, a, lda, af, ldaf, work)
SLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix. double precision function zla_porpvgrw (uplo, ncols, a, lda, af, ldaf, work)
ZLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.

CLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.

Purpose:


CLA_PORPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

NCOLS


NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is COMPLEX array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by CPOTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

WORK


WORK is REAL array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 104 of file cla_porpvgrw.f.

DLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.

Purpose:


DLA_PORPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

NCOLS


NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is DOUBLE PRECISION array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by DPOTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

WORK


WORK is DOUBLE PRECISION array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 104 of file dla_porpvgrw.f.

SLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.

Purpose:


SLA_PORPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

NCOLS


NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.

A


A is REAL array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is REAL array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by SPOTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

WORK


WORK is REAL array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 103 of file sla_porpvgrw.f.

ZLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.

Purpose:


ZLA_PORPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

NCOLS


NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is COMPLEX*16 array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by ZPOTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

WORK


WORK is DOUBLE PRECISION array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 105 of file zla_porpvgrw.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:36 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.