 |
|
| |
lagtm - lagtm: tridiagonal matrix-matrix multiply
subroutine clagtm (trans, n, nrhs, alpha, dl, d, du, x,
ldx, beta, b, ldb)
CLAGTM performs a matrix-matrix product of the form C =
αAB+βC, where A is a tridiagonal matrix, B and C are
rectangular matrices, and α and β are scalars, which may be 0,
1, or -1. subroutine dlagtm (trans, n, nrhs, alpha, dl, d, du, x,
ldx, beta, b, ldb)
DLAGTM performs a matrix-matrix product of the form C =
αAB+βC, where A is a tridiagonal matrix, B and C are
rectangular matrices, and α and β are scalars, which may be 0,
1, or -1. subroutine slagtm (trans, n, nrhs, alpha, dl, d, du, x,
ldx, beta, b, ldb)
SLAGTM performs a matrix-matrix product of the form C =
αAB+βC, where A is a tridiagonal matrix, B and C are
rectangular matrices, and α and β are scalars, which may be 0,
1, or -1. subroutine zlagtm (trans, n, nrhs, alpha, dl, d, du, x,
ldx, beta, b, ldb)
ZLAGTM performs a matrix-matrix product of the form C =
αAB+βC, where A is a tridiagonal matrix, B and C are
rectangular matrices, and α and β are scalars, which may be 0,
1, or -1.
CLAGTM performs a matrix-matrix product of the form C =
αAB+βC, where A is a tridiagonal matrix, B and C are
rectangular matrices, and α and β are scalars, which may be 0,
1, or -1.
Purpose:
CLAGTM performs a matrix-matrix product of the form
B := alpha * A * X + beta * B
where A is a tridiagonal matrix of order N, B and X are N by NRHS
matrices, and alpha and beta are real scalars, each of which may be
0., 1., or -1.
Parameters
TRANS
TRANS is CHARACTER*1
Specifies the operation applied to A.
= 'N': No transpose, B := alpha * A * X + beta * B
= 'T': Transpose, B := alpha * A**T * X + beta * B
= 'C': Conjugate transpose, B := alpha * A**H * X + beta * B
N
N is INTEGER
The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices X and B.
ALPHA
ALPHA is REAL
The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise,
it is assumed to be 0.
DL
DL is COMPLEX array, dimension (N-1)
The (n-1) sub-diagonal elements of T.
D
D is COMPLEX array, dimension (N)
The diagonal elements of T.
DU
DU is COMPLEX array, dimension (N-1)
The (n-1) super-diagonal elements of T.
X
X is COMPLEX array, dimension (LDX,NRHS)
The N by NRHS matrix X.
LDX
LDX is INTEGER
The leading dimension of the array X. LDX >= max(N,1).
BETA
BETA is REAL
The scalar beta. BETA must be 0., 1., or -1.; otherwise,
it is assumed to be 1.
B
B is COMPLEX array, dimension (LDB,NRHS)
On entry, the N by NRHS matrix B.
On exit, B is overwritten by the matrix expression
B := alpha * A * X + beta * B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(N,1).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 143 of file clagtm.f.
DLAGTM performs a matrix-matrix product of the form C =
αAB+βC, where A is a tridiagonal matrix, B and C are
rectangular matrices, and α and β are scalars, which may be 0,
1, or -1.
Purpose:
DLAGTM performs a matrix-matrix product of the form
B := alpha * A * X + beta * B
where A is a tridiagonal matrix of order N, B and X are N by NRHS
matrices, and alpha and beta are real scalars, each of which may be
0., 1., or -1.
Parameters
TRANS
TRANS is CHARACTER*1
Specifies the operation applied to A.
= 'N': No transpose, B := alpha * A * X + beta * B
= 'T': Transpose, B := alpha * A'* X + beta * B
= 'C': Conjugate transpose = Transpose
N
N is INTEGER
The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices X and B.
ALPHA
ALPHA is DOUBLE PRECISION
The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise,
it is assumed to be 0.
DL
DL is DOUBLE PRECISION array, dimension (N-1)
The (n-1) sub-diagonal elements of T.
D
D is DOUBLE PRECISION array, dimension (N)
The diagonal elements of T.
DU
DU is DOUBLE PRECISION array, dimension (N-1)
The (n-1) super-diagonal elements of T.
X
X is DOUBLE PRECISION array, dimension (LDX,NRHS)
The N by NRHS matrix X.
LDX
LDX is INTEGER
The leading dimension of the array X. LDX >= max(N,1).
BETA
BETA is DOUBLE PRECISION
The scalar beta. BETA must be 0., 1., or -1.; otherwise,
it is assumed to be 1.
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N by NRHS matrix B.
On exit, B is overwritten by the matrix expression
B := alpha * A * X + beta * B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(N,1).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 143 of file dlagtm.f.
SLAGTM performs a matrix-matrix product of the form C =
αAB+βC, where A is a tridiagonal matrix, B and C are
rectangular matrices, and α and β are scalars, which may be 0,
1, or -1.
Purpose:
SLAGTM performs a matrix-matrix product of the form
B := alpha * A * X + beta * B
where A is a tridiagonal matrix of order N, B and X are N by NRHS
matrices, and alpha and beta are real scalars, each of which may be
0., 1., or -1.
Parameters
TRANS
TRANS is CHARACTER*1
Specifies the operation applied to A.
= 'N': No transpose, B := alpha * A * X + beta * B
= 'T': Transpose, B := alpha * A'* X + beta * B
= 'C': Conjugate transpose = Transpose
N
N is INTEGER
The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices X and B.
ALPHA
ALPHA is REAL
The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise,
it is assumed to be 0.
DL
DL is REAL array, dimension (N-1)
The (n-1) sub-diagonal elements of T.
D
D is REAL array, dimension (N)
The diagonal elements of T.
DU
DU is REAL array, dimension (N-1)
The (n-1) super-diagonal elements of T.
X
X is REAL array, dimension (LDX,NRHS)
The N by NRHS matrix X.
LDX
LDX is INTEGER
The leading dimension of the array X. LDX >= max(N,1).
BETA
BETA is REAL
The scalar beta. BETA must be 0., 1., or -1.; otherwise,
it is assumed to be 1.
B
B is REAL array, dimension (LDB,NRHS)
On entry, the N by NRHS matrix B.
On exit, B is overwritten by the matrix expression
B := alpha * A * X + beta * B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(N,1).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 143 of file slagtm.f.
ZLAGTM performs a matrix-matrix product of the form C =
αAB+βC, where A is a tridiagonal matrix, B and C are
rectangular matrices, and α and β are scalars, which may be 0,
1, or -1.
Purpose:
ZLAGTM performs a matrix-matrix product of the form
B := alpha * A * X + beta * B
where A is a tridiagonal matrix of order N, B and X are N by NRHS
matrices, and alpha and beta are real scalars, each of which may be
0., 1., or -1.
Parameters
TRANS
TRANS is CHARACTER*1
Specifies the operation applied to A.
= 'N': No transpose, B := alpha * A * X + beta * B
= 'T': Transpose, B := alpha * A**T * X + beta * B
= 'C': Conjugate transpose, B := alpha * A**H * X + beta * B
N
N is INTEGER
The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices X and B.
ALPHA
ALPHA is DOUBLE PRECISION
The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise,
it is assumed to be 0.
DL
DL is COMPLEX*16 array, dimension (N-1)
The (n-1) sub-diagonal elements of T.
D
D is COMPLEX*16 array, dimension (N)
The diagonal elements of T.
DU
DU is COMPLEX*16 array, dimension (N-1)
The (n-1) super-diagonal elements of T.
X
X is COMPLEX*16 array, dimension (LDX,NRHS)
The N by NRHS matrix X.
LDX
LDX is INTEGER
The leading dimension of the array X. LDX >= max(N,1).
BETA
BETA is DOUBLE PRECISION
The scalar beta. BETA must be 0., 1., or -1.; otherwise,
it is assumed to be 1.
B
B is COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the N by NRHS matrix B.
On exit, B is overwritten by the matrix expression
B := alpha * A * X + beta * B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(N,1).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 143 of file zlagtm.f.
Generated automatically by Doxygen for LAPACK from the source
code.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc.
|