GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
lahef_rook(3) LAPACK lahef_rook(3)

lahef_rook - la{he,sy}f_rook: triangular factor step


subroutine clahef_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
subroutine clasyf_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
CLASYF_ROOK computes a partial factorization of a complex symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method. subroutine dlasyf_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
DLASYF_ROOK *> DLASYF_ROOK computes a partial factorization of a real symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method. subroutine slasyf_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
SLASYF_ROOK computes a partial factorization of a real symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method. subroutine zlahef_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
subroutine zlasyf_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
ZLASYF_ROOK computes a partial factorization of a complex symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.

Purpose:


CLAHEF_ROOK computes a partial factorization of a complex Hermitian
matrix A using the bounded Bunch-Kaufman ('rook') diagonal pivoting
method. The partial factorization has the form:
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
( 0 U22 ) ( 0 D ) ( U12**H U22**H )
A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L'
( L21 I ) ( 0 A22 ) ( 0 I )
where the order of D is at most NB. The actual order is returned in
the argument KB, and is either NB or NB-1, or N if N <= NB.
Note that U**H denotes the conjugate transpose of U.
CLAHEF_ROOK is an auxiliary routine called by CHETRF_ROOK. It uses
blocked code (calling Level 3 BLAS) to update the submatrix
A11 (if UPLO = 'U') or A22 (if UPLO = 'L').

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

N


N is INTEGER
The order of the matrix A. N >= 0.

NB


NB is INTEGER
The maximum number of columns of the matrix A that should be
factored. NB should be at least 2 to allow for 2-by-2 pivot
blocks.

KB


KB is INTEGER
The number of columns of A that were actually factored.
KB is either NB-1 or NB, or N if N <= NB.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the Hermitian matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, A contains details of the partial factorization.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U':
Only the last KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k-1 and -IPIV(k-1) were inerchaged,
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
If UPLO = 'L':
Only the first KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k)
were interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k+1 and -IPIV(k+1) were inerchaged,
D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

W


W is COMPLEX array, dimension (LDW,NB)

LDW


LDW is INTEGER
The leading dimension of the array W. LDW >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:


November 2013, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester

Definition at line 182 of file clahef_rook.f.

CLASYF_ROOK computes a partial factorization of a complex symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.

Purpose:


CLASYF_ROOK computes a partial factorization of a complex symmetric
matrix A using the bounded Bunch-Kaufman ('rook') diagonal
pivoting method. The partial factorization has the form:
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
( 0 U22 ) ( 0 D ) ( U12**T U22**T )
A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L'
( L21 I ) ( 0 A22 ) ( 0 I )
where the order of D is at most NB. The actual order is returned in
the argument KB, and is either NB or NB-1, or N if N <= NB.
CLASYF_ROOK is an auxiliary routine called by CSYTRF_ROOK. It uses
blocked code (calling Level 3 BLAS) to update the submatrix
A11 (if UPLO = 'U') or A22 (if UPLO = 'L').

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

N


N is INTEGER
The order of the matrix A. N >= 0.

NB


NB is INTEGER
The maximum number of columns of the matrix A that should be
factored. NB should be at least 2 to allow for 2-by-2 pivot
blocks.

KB


KB is INTEGER
The number of columns of A that were actually factored.
KB is either NB-1 or NB, or N if N <= NB.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, A contains details of the partial factorization.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U':
Only the last KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k-1 and -IPIV(k-1) were inerchaged,
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
If UPLO = 'L':
Only the first KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k)
were interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k+1 and -IPIV(k+1) were inerchaged,
D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

W


W is COMPLEX array, dimension (LDW,NB)

LDW


LDW is INTEGER
The leading dimension of the array W. LDW >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:


November 2013, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester

Definition at line 182 of file clasyf_rook.f.

DLASYF_ROOK *> DLASYF_ROOK computes a partial factorization of a real symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.

Purpose:


DLASYF_ROOK computes a partial factorization of a real symmetric
matrix A using the bounded Bunch-Kaufman ('rook') diagonal
pivoting method. The partial factorization has the form:
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
( 0 U22 ) ( 0 D ) ( U12**T U22**T )
A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L'
( L21 I ) ( 0 A22 ) ( 0 I )
where the order of D is at most NB. The actual order is returned in
the argument KB, and is either NB or NB-1, or N if N <= NB.
DLASYF_ROOK is an auxiliary routine called by DSYTRF_ROOK. It uses
blocked code (calling Level 3 BLAS) to update the submatrix
A11 (if UPLO = 'U') or A22 (if UPLO = 'L').

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

N


N is INTEGER
The order of the matrix A. N >= 0.

NB


NB is INTEGER
The maximum number of columns of the matrix A that should be
factored. NB should be at least 2 to allow for 2-by-2 pivot
blocks.

KB


KB is INTEGER
The number of columns of A that were actually factored.
KB is either NB-1 or NB, or N if N <= NB.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, A contains details of the partial factorization.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U':
Only the last KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k-1 and -IPIV(k-1) were inerchaged,
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
If UPLO = 'L':
Only the first KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k)
were interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k+1 and -IPIV(k+1) were inerchaged,
D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

W


W is DOUBLE PRECISION array, dimension (LDW,NB)

LDW


LDW is INTEGER
The leading dimension of the array W. LDW >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:


November 2013, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester

Definition at line 182 of file dlasyf_rook.f.

SLASYF_ROOK computes a partial factorization of a real symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.

Purpose:


SLASYF_ROOK computes a partial factorization of a real symmetric
matrix A using the bounded Bunch-Kaufman ('rook') diagonal
pivoting method. The partial factorization has the form:
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
( 0 U22 ) ( 0 D ) ( U12**T U22**T )
A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L'
( L21 I ) ( 0 A22 ) ( 0 I )
where the order of D is at most NB. The actual order is returned in
the argument KB, and is either NB or NB-1, or N if N <= NB.
SLASYF_ROOK is an auxiliary routine called by SSYTRF_ROOK. It uses
blocked code (calling Level 3 BLAS) to update the submatrix
A11 (if UPLO = 'U') or A22 (if UPLO = 'L').

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

N


N is INTEGER
The order of the matrix A. N >= 0.

NB


NB is INTEGER
The maximum number of columns of the matrix A that should be
factored. NB should be at least 2 to allow for 2-by-2 pivot
blocks.

KB


KB is INTEGER
The number of columns of A that were actually factored.
KB is either NB-1 or NB, or N if N <= NB.

A


A is REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, A contains details of the partial factorization.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U':
Only the last KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k-1 and -IPIV(k-1) were inerchaged,
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
If UPLO = 'L':
Only the first KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k)
were interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k+1 and -IPIV(k+1) were inerchaged,
D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

W


W is REAL array, dimension (LDW,NB)

LDW


LDW is INTEGER
The leading dimension of the array W. LDW >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:


November 2013, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester

Definition at line 182 of file slasyf_rook.f.

Purpose:


ZLAHEF_ROOK computes a partial factorization of a complex Hermitian
matrix A using the bounded Bunch-Kaufman ('rook') diagonal pivoting
method. The partial factorization has the form:
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
( 0 U22 ) ( 0 D ) ( U12**H U22**H )
A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L'
( L21 I ) ( 0 A22 ) ( 0 I )
where the order of D is at most NB. The actual order is returned in
the argument KB, and is either NB or NB-1, or N if N <= NB.
Note that U**H denotes the conjugate transpose of U.
ZLAHEF_ROOK is an auxiliary routine called by ZHETRF_ROOK. It uses
blocked code (calling Level 3 BLAS) to update the submatrix
A11 (if UPLO = 'U') or A22 (if UPLO = 'L').

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

N


N is INTEGER
The order of the matrix A. N >= 0.

NB


NB is INTEGER
The maximum number of columns of the matrix A that should be
factored. NB should be at least 2 to allow for 2-by-2 pivot
blocks.

KB


KB is INTEGER
The number of columns of A that were actually factored.
KB is either NB-1 or NB, or N if N <= NB.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the Hermitian matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, A contains details of the partial factorization.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U':
Only the last KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k-1 and -IPIV(k-1) were inerchaged,
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
If UPLO = 'L':
Only the first KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k)
were interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k+1 and -IPIV(k+1) were inerchaged,
D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

W


W is COMPLEX*16 array, dimension (LDW,NB)

LDW


LDW is INTEGER
The leading dimension of the array W. LDW >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:


November 2013, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester

Definition at line 182 of file zlahef_rook.f.

ZLASYF_ROOK computes a partial factorization of a complex symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.

Purpose:


ZLASYF_ROOK computes a partial factorization of a complex symmetric
matrix A using the bounded Bunch-Kaufman ('rook') diagonal
pivoting method. The partial factorization has the form:
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
( 0 U22 ) ( 0 D ) ( U12**T U22**T )
A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L'
( L21 I ) ( 0 A22 ) ( 0 I )
where the order of D is at most NB. The actual order is returned in
the argument KB, and is either NB or NB-1, or N if N <= NB.
ZLASYF_ROOK is an auxiliary routine called by ZSYTRF_ROOK. It uses
blocked code (calling Level 3 BLAS) to update the submatrix
A11 (if UPLO = 'U') or A22 (if UPLO = 'L').

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

N


N is INTEGER
The order of the matrix A. N >= 0.

NB


NB is INTEGER
The maximum number of columns of the matrix A that should be
factored. NB should be at least 2 to allow for 2-by-2 pivot
blocks.

KB


KB is INTEGER
The number of columns of A that were actually factored.
KB is either NB-1 or NB, or N if N <= NB.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, A contains details of the partial factorization.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U':
Only the last KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k-1 and -IPIV(k-1) were inerchaged,
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
If UPLO = 'L':
Only the first KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k)
were interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k+1 and -IPIV(k+1) were inerchaged,
D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

W


W is COMPLEX*16 array, dimension (LDW,NB)

LDW


LDW is INTEGER
The leading dimension of the array W. LDW >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:


November 2013, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester

Definition at line 182 of file zlasyf_rook.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:36 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.