 |
|
| |
lahef_rook(3) |
LAPACK |
lahef_rook(3) |
lahef_rook - la{he,sy}f_rook: triangular factor step
subroutine clahef_rook (uplo, n, nb, kb, a, lda, ipiv, w,
ldw, info)
subroutine clasyf_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
CLASYF_ROOK computes a partial factorization of a complex symmetric
matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.
subroutine dlasyf_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
DLASYF_ROOK *> DLASYF_ROOK computes a partial factorization of a
real symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal
pivoting method. subroutine slasyf_rook (uplo, n, nb, kb, a, lda,
ipiv, w, ldw, info)
SLASYF_ROOK computes a partial factorization of a real symmetric matrix
using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.
subroutine zlahef_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
subroutine zlasyf_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
ZLASYF_ROOK computes a partial factorization of a complex symmetric
matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.
Purpose:
CLAHEF_ROOK computes a partial factorization of a complex Hermitian
matrix A using the bounded Bunch-Kaufman ('rook') diagonal pivoting
method. The partial factorization has the form:
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
( 0 U22 ) ( 0 D ) ( U12**H U22**H )
A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L'
( L21 I ) ( 0 A22 ) ( 0 I )
where the order of D is at most NB. The actual order is returned in
the argument KB, and is either NB or NB-1, or N if N <= NB.
Note that U**H denotes the conjugate transpose of U.
CLAHEF_ROOK is an auxiliary routine called by CHETRF_ROOK. It uses
blocked code (calling Level 3 BLAS) to update the submatrix
A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
Parameters
UPLO
UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N
N is INTEGER
The order of the matrix A. N >= 0.
NB
NB is INTEGER
The maximum number of columns of the matrix A that should be
factored. NB should be at least 2 to allow for 2-by-2 pivot
blocks.
KB
KB is INTEGER
The number of columns of A that were actually factored.
KB is either NB-1 or NB, or N if N <= NB.
A
A is COMPLEX array, dimension (LDA,N)
On entry, the Hermitian matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, A contains details of the partial factorization.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U':
Only the last KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k-1 and -IPIV(k-1) were inerchaged,
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
If UPLO = 'L':
Only the first KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k)
were interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k+1 and -IPIV(k+1) were inerchaged,
D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W
W is COMPLEX array, dimension (LDW,NB)
LDW
LDW is INTEGER
The leading dimension of the array W. LDW >= max(1,N).
INFO
INFO is INTEGER
= 0: successful exit
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2013, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester
Definition at line 182 of file clahef_rook.f.
CLASYF_ROOK computes a partial factorization of a complex
symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting
method.
Purpose:
CLASYF_ROOK computes a partial factorization of a complex symmetric
matrix A using the bounded Bunch-Kaufman ('rook') diagonal
pivoting method. The partial factorization has the form:
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
( 0 U22 ) ( 0 D ) ( U12**T U22**T )
A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L'
( L21 I ) ( 0 A22 ) ( 0 I )
where the order of D is at most NB. The actual order is returned in
the argument KB, and is either NB or NB-1, or N if N <= NB.
CLASYF_ROOK is an auxiliary routine called by CSYTRF_ROOK. It uses
blocked code (calling Level 3 BLAS) to update the submatrix
A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
Parameters
UPLO
UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N
N is INTEGER
The order of the matrix A. N >= 0.
NB
NB is INTEGER
The maximum number of columns of the matrix A that should be
factored. NB should be at least 2 to allow for 2-by-2 pivot
blocks.
KB
KB is INTEGER
The number of columns of A that were actually factored.
KB is either NB-1 or NB, or N if N <= NB.
A
A is COMPLEX array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, A contains details of the partial factorization.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U':
Only the last KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k-1 and -IPIV(k-1) were inerchaged,
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
If UPLO = 'L':
Only the first KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k)
were interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k+1 and -IPIV(k+1) were inerchaged,
D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W
W is COMPLEX array, dimension (LDW,NB)
LDW
LDW is INTEGER
The leading dimension of the array W. LDW >= max(1,N).
INFO
INFO is INTEGER
= 0: successful exit
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2013, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester
Definition at line 182 of file clasyf_rook.f.
DLASYF_ROOK *> DLASYF_ROOK computes a partial
factorization of a real symmetric matrix using the bounded Bunch-Kaufman
('rook') diagonal pivoting method.
Purpose:
DLASYF_ROOK computes a partial factorization of a real symmetric
matrix A using the bounded Bunch-Kaufman ('rook') diagonal
pivoting method. The partial factorization has the form:
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
( 0 U22 ) ( 0 D ) ( U12**T U22**T )
A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L'
( L21 I ) ( 0 A22 ) ( 0 I )
where the order of D is at most NB. The actual order is returned in
the argument KB, and is either NB or NB-1, or N if N <= NB.
DLASYF_ROOK is an auxiliary routine called by DSYTRF_ROOK. It uses
blocked code (calling Level 3 BLAS) to update the submatrix
A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
Parameters
UPLO
UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N
N is INTEGER
The order of the matrix A. N >= 0.
NB
NB is INTEGER
The maximum number of columns of the matrix A that should be
factored. NB should be at least 2 to allow for 2-by-2 pivot
blocks.
KB
KB is INTEGER
The number of columns of A that were actually factored.
KB is either NB-1 or NB, or N if N <= NB.
A
A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, A contains details of the partial factorization.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U':
Only the last KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k-1 and -IPIV(k-1) were inerchaged,
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
If UPLO = 'L':
Only the first KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k)
were interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k+1 and -IPIV(k+1) were inerchaged,
D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W
W is DOUBLE PRECISION array, dimension (LDW,NB)
LDW
LDW is INTEGER
The leading dimension of the array W. LDW >= max(1,N).
INFO
INFO is INTEGER
= 0: successful exit
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2013, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester
Definition at line 182 of file dlasyf_rook.f.
SLASYF_ROOK computes a partial factorization of a real
symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting
method.
Purpose:
SLASYF_ROOK computes a partial factorization of a real symmetric
matrix A using the bounded Bunch-Kaufman ('rook') diagonal
pivoting method. The partial factorization has the form:
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
( 0 U22 ) ( 0 D ) ( U12**T U22**T )
A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L'
( L21 I ) ( 0 A22 ) ( 0 I )
where the order of D is at most NB. The actual order is returned in
the argument KB, and is either NB or NB-1, or N if N <= NB.
SLASYF_ROOK is an auxiliary routine called by SSYTRF_ROOK. It uses
blocked code (calling Level 3 BLAS) to update the submatrix
A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
Parameters
UPLO
UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N
N is INTEGER
The order of the matrix A. N >= 0.
NB
NB is INTEGER
The maximum number of columns of the matrix A that should be
factored. NB should be at least 2 to allow for 2-by-2 pivot
blocks.
KB
KB is INTEGER
The number of columns of A that were actually factored.
KB is either NB-1 or NB, or N if N <= NB.
A
A is REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, A contains details of the partial factorization.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U':
Only the last KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k-1 and -IPIV(k-1) were inerchaged,
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
If UPLO = 'L':
Only the first KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k)
were interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k+1 and -IPIV(k+1) were inerchaged,
D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W
W is REAL array, dimension (LDW,NB)
LDW
LDW is INTEGER
The leading dimension of the array W. LDW >= max(1,N).
INFO
INFO is INTEGER
= 0: successful exit
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2013, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester
Definition at line 182 of file slasyf_rook.f.
Purpose:
ZLAHEF_ROOK computes a partial factorization of a complex Hermitian
matrix A using the bounded Bunch-Kaufman ('rook') diagonal pivoting
method. The partial factorization has the form:
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
( 0 U22 ) ( 0 D ) ( U12**H U22**H )
A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L'
( L21 I ) ( 0 A22 ) ( 0 I )
where the order of D is at most NB. The actual order is returned in
the argument KB, and is either NB or NB-1, or N if N <= NB.
Note that U**H denotes the conjugate transpose of U.
ZLAHEF_ROOK is an auxiliary routine called by ZHETRF_ROOK. It uses
blocked code (calling Level 3 BLAS) to update the submatrix
A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
Parameters
UPLO
UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N
N is INTEGER
The order of the matrix A. N >= 0.
NB
NB is INTEGER
The maximum number of columns of the matrix A that should be
factored. NB should be at least 2 to allow for 2-by-2 pivot
blocks.
KB
KB is INTEGER
The number of columns of A that were actually factored.
KB is either NB-1 or NB, or N if N <= NB.
A
A is COMPLEX*16 array, dimension (LDA,N)
On entry, the Hermitian matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, A contains details of the partial factorization.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U':
Only the last KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k-1 and -IPIV(k-1) were inerchaged,
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
If UPLO = 'L':
Only the first KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k)
were interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k+1 and -IPIV(k+1) were inerchaged,
D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W
W is COMPLEX*16 array, dimension (LDW,NB)
LDW
LDW is INTEGER
The leading dimension of the array W. LDW >= max(1,N).
INFO
INFO is INTEGER
= 0: successful exit
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2013, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester
Definition at line 182 of file zlahef_rook.f.
ZLASYF_ROOK computes a partial factorization of a complex
symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting
method.
Purpose:
ZLASYF_ROOK computes a partial factorization of a complex symmetric
matrix A using the bounded Bunch-Kaufman ('rook') diagonal
pivoting method. The partial factorization has the form:
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
( 0 U22 ) ( 0 D ) ( U12**T U22**T )
A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L'
( L21 I ) ( 0 A22 ) ( 0 I )
where the order of D is at most NB. The actual order is returned in
the argument KB, and is either NB or NB-1, or N if N <= NB.
ZLASYF_ROOK is an auxiliary routine called by ZSYTRF_ROOK. It uses
blocked code (calling Level 3 BLAS) to update the submatrix
A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
Parameters
UPLO
UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N
N is INTEGER
The order of the matrix A. N >= 0.
NB
NB is INTEGER
The maximum number of columns of the matrix A that should be
factored. NB should be at least 2 to allow for 2-by-2 pivot
blocks.
KB
KB is INTEGER
The number of columns of A that were actually factored.
KB is either NB-1 or NB, or N if N <= NB.
A
A is COMPLEX*16 array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, A contains details of the partial factorization.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U':
Only the last KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k-1 and -IPIV(k-1) were inerchaged,
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
If UPLO = 'L':
Only the first KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k)
were interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k+1 and -IPIV(k+1) were inerchaged,
D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W
W is COMPLEX*16 array, dimension (LDW,NB)
LDW
LDW is INTEGER
The leading dimension of the array W. LDW >= max(1,N).
INFO
INFO is INTEGER
= 0: successful exit
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2013, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester
Definition at line 182 of file zlasyf_rook.f.
Generated automatically by Doxygen for LAPACK from the source
code.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc.
|