GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
lanhp(3) LAPACK lanhp(3)

lanhp - lan{hp,sp}: Hermitian/symmetric matrix, packed


real function clanhp (norm, uplo, n, ap, work)
CLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form. real function clansp (norm, uplo, n, ap, work)
CLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form. double precision function dlansp (norm, uplo, n, ap, work)
DLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form. real function slansp (norm, uplo, n, ap, work)
SLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form. double precision function zlanhp (norm, uplo, n, ap, work)
ZLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form. double precision function zlansp (norm, uplo, n, ap, work)
ZLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.

CLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.

Purpose:


CLANHP returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
complex hermitian matrix A, supplied in packed form.

Returns

CLANHP


CLANHP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in CLANHP as described
above.

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
hermitian matrix A is supplied.
= 'U': Upper triangular part of A is supplied
= 'L': Lower triangular part of A is supplied

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, CLANHP is
set to zero.

AP


AP is COMPLEX array, dimension (N*(N+1)/2)
The upper or lower triangle of the hermitian matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
Note that the imaginary parts of the diagonal elements need
not be set and are assumed to be zero.

WORK


WORK is REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 116 of file clanhp.f.

CLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.

Purpose:


CLANSP returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
complex symmetric matrix A, supplied in packed form.

Returns

CLANSP


CLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in CLANSP as described
above.

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is supplied.
= 'U': Upper triangular part of A is supplied
= 'L': Lower triangular part of A is supplied

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, CLANSP is
set to zero.

AP


AP is COMPLEX array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

WORK


WORK is REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 114 of file clansp.f.

DLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.

Purpose:


DLANSP returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric matrix A, supplied in packed form.

Returns

DLANSP


DLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in DLANSP as described
above.

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is supplied.
= 'U': Upper triangular part of A is supplied
= 'L': Lower triangular part of A is supplied

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANSP is
set to zero.

AP


AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

WORK


WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 113 of file dlansp.f.

SLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.

Purpose:


SLANSP returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric matrix A, supplied in packed form.

Returns

SLANSP


SLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in SLANSP as described
above.

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is supplied.
= 'U': Upper triangular part of A is supplied
= 'L': Lower triangular part of A is supplied

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANSP is
set to zero.

AP


AP is REAL array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

WORK


WORK is REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 113 of file slansp.f.

ZLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.

Purpose:


ZLANHP returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
complex hermitian matrix A, supplied in packed form.

Returns

ZLANHP


ZLANHP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in ZLANHP as described
above.

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
hermitian matrix A is supplied.
= 'U': Upper triangular part of A is supplied
= 'L': Lower triangular part of A is supplied

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, ZLANHP is
set to zero.

AP


AP is COMPLEX*16 array, dimension (N*(N+1)/2)
The upper or lower triangle of the hermitian matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
Note that the imaginary parts of the diagonal elements need
not be set and are assumed to be zero.

WORK


WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 116 of file zlanhp.f.

ZLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.

Purpose:


ZLANSP returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
complex symmetric matrix A, supplied in packed form.

Returns

ZLANSP


ZLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in ZLANSP as described
above.

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is supplied.
= 'U': Upper triangular part of A is supplied
= 'L': Lower triangular part of A is supplied

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, ZLANSP is
set to zero.

AP


AP is COMPLEX*16 array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

WORK


WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 114 of file zlansp.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:37 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.