GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
lanhs(3) LAPACK lanhs(3)

lanhs - lanhs: Hessenberg


real function clanhs (norm, n, a, lda, work)
CLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix. double precision function dlanhs (norm, n, a, lda, work)
DLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix. real function slanhs (norm, n, a, lda, work)
SLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix. double precision function zlanhs (norm, n, a, lda, work)
ZLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.

CLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.

Purpose:


CLANHS returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
Hessenberg matrix A.

Returns

CLANHS


CLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in CLANHS as described
above.

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, CLANHS is
set to zero.

A


A is COMPLEX array, dimension (LDA,N)
The n by n upper Hessenberg matrix A; the part of A below the
first sub-diagonal is not referenced.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(N,1).

WORK


WORK is REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file clanhs.f.

DLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.

Purpose:


DLANHS returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
Hessenberg matrix A.

Returns

DLANHS


DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in DLANHS as described
above.

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANHS is
set to zero.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
The n by n upper Hessenberg matrix A; the part of A below the
first sub-diagonal is not referenced.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(N,1).

WORK


WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 107 of file dlanhs.f.

SLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.

Purpose:


SLANHS returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
Hessenberg matrix A.

Returns

SLANHS


SLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in SLANHS as described
above.

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANHS is
set to zero.

A


A is REAL array, dimension (LDA,N)
The n by n upper Hessenberg matrix A; the part of A below the
first sub-diagonal is not referenced.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(N,1).

WORK


WORK is REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 107 of file slanhs.f.

ZLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.

Purpose:


ZLANHS returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
Hessenberg matrix A.

Returns

ZLANHS


ZLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in ZLANHS as described
above.

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, ZLANHS is
set to zero.

A


A is COMPLEX*16 array, dimension (LDA,N)
The n by n upper Hessenberg matrix A; the part of A below the
first sub-diagonal is not referenced.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(N,1).

WORK


WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file zlanhs.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:37 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.