 |
|
| |
laqhb - laqhb: row/col scale matrix
subroutine claqhb (uplo, n, kd, ab, ldab, s, scond, amax,
equed)
CLAQHB scales a Hermitian band matrix, using scaling factors computed
by cpbequ. subroutine claqsb (uplo, n, kd, ab, ldab, s, scond, amax,
equed)
CLAQSB scales a symmetric/Hermitian band matrix, using scaling factors
computed by spbequ. subroutine dlaqsb (uplo, n, kd, ab, ldab, s,
scond, amax, equed)
DLAQSB scales a symmetric/Hermitian band matrix, using scaling factors
computed by spbequ. subroutine slaqsb (uplo, n, kd, ab, ldab, s,
scond, amax, equed)
SLAQSB scales a symmetric/Hermitian band matrix, using scaling factors
computed by spbequ. subroutine zlaqhb (uplo, n, kd, ab, ldab, s,
scond, amax, equed)
ZLAQHB scales a Hermitian band matrix, using scaling factors computed
by cpbequ. subroutine zlaqsb (uplo, n, kd, ab, ldab, s, scond, amax,
equed)
ZLAQSB scales a symmetric/Hermitian band matrix, using scaling factors
computed by spbequ.
CLAQHB scales a Hermitian band matrix, using scaling
factors computed by cpbequ.
Purpose:
CLAQHB equilibrates an Hermitian band matrix A using the scaling
factors in the vector S.
Parameters
UPLO
UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
AB
AB is COMPLEX array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**H *U or A = L*L**H of the band
matrix A, in the same storage format as A.
LDAB
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
S
S is REAL array, dimension (N)
The scale factors for A.
SCOND
SCOND is REAL
Ratio of the smallest S(i) to the largest S(i).
AMAX
AMAX is REAL
Absolute value of largest matrix entry.
EQUED
EQUED is CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters:
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 140 of file claqhb.f.
CLAQSB scales a symmetric/Hermitian band matrix, using
scaling factors computed by spbequ.
Purpose:
CLAQSB equilibrates a symmetric band matrix A using the scaling
factors in the vector S.
Parameters
UPLO
UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
AB
AB is COMPLEX array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**H *U or A = L*L**H of the band
matrix A, in the same storage format as A.
LDAB
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
S
S is REAL array, dimension (N)
The scale factors for A.
SCOND
SCOND is REAL
Ratio of the smallest S(i) to the largest S(i).
AMAX
AMAX is REAL
Absolute value of largest matrix entry.
EQUED
EQUED is CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters:
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 140 of file claqsb.f.
DLAQSB scales a symmetric/Hermitian band matrix, using
scaling factors computed by spbequ.
Purpose:
DLAQSB equilibrates a symmetric band matrix A using the scaling
factors in the vector S.
Parameters
UPLO
UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
AB
AB is DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T of the band
matrix A, in the same storage format as A.
LDAB
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
S
S is DOUBLE PRECISION array, dimension (N)
The scale factors for A.
SCOND
SCOND is DOUBLE PRECISION
Ratio of the smallest S(i) to the largest S(i).
AMAX
AMAX is DOUBLE PRECISION
Absolute value of largest matrix entry.
EQUED
EQUED is CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters:
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 139 of file dlaqsb.f.
SLAQSB scales a symmetric/Hermitian band matrix, using
scaling factors computed by spbequ.
Purpose:
SLAQSB equilibrates a symmetric band matrix A using the scaling
factors in the vector S.
Parameters
UPLO
UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
AB
AB is REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T of the band
matrix A, in the same storage format as A.
LDAB
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
S
S is REAL array, dimension (N)
The scale factors for A.
SCOND
SCOND is REAL
Ratio of the smallest S(i) to the largest S(i).
AMAX
AMAX is REAL
Absolute value of largest matrix entry.
EQUED
EQUED is CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters:
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 139 of file slaqsb.f.
ZLAQHB scales a Hermitian band matrix, using scaling
factors computed by cpbequ.
Purpose:
ZLAQHB equilibrates a Hermitian band matrix A
using the scaling factors in the vector S.
Parameters
UPLO
UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
AB
AB is COMPLEX*16 array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**H *U or A = L*L**H of the band
matrix A, in the same storage format as A.
LDAB
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
S
S is DOUBLE PRECISION array, dimension (N)
The scale factors for A.
SCOND
SCOND is DOUBLE PRECISION
Ratio of the smallest S(i) to the largest S(i).
AMAX
AMAX is DOUBLE PRECISION
Absolute value of largest matrix entry.
EQUED
EQUED is CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters:
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 140 of file zlaqhb.f.
ZLAQSB scales a symmetric/Hermitian band matrix, using
scaling factors computed by spbequ.
Purpose:
ZLAQSB equilibrates a symmetric band matrix A using the scaling
factors in the vector S.
Parameters
UPLO
UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
AB
AB is COMPLEX*16 array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**H *U or A = L*L**H of the band
matrix A, in the same storage format as A.
LDAB
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
S
S is DOUBLE PRECISION array, dimension (N)
The scale factors for A.
SCOND
SCOND is DOUBLE PRECISION
Ratio of the smallest S(i) to the largest S(i).
AMAX
AMAX is DOUBLE PRECISION
Absolute value of largest matrix entry.
EQUED
EQUED is CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters:
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 140 of file zlaqsb.f.
Generated automatically by Doxygen for LAPACK from the source
code.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc.
|