GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
laqhe(3) LAPACK laqhe(3)

laqhe - laqhe: row/col scale matrix


subroutine claqhe (uplo, n, a, lda, s, scond, amax, equed)
CLAQHE scales a Hermitian matrix. subroutine claqsy (uplo, n, a, lda, s, scond, amax, equed)
CLAQSY scales a symmetric/Hermitian matrix, using scaling factors computed by spoequ. subroutine dlaqsy (uplo, n, a, lda, s, scond, amax, equed)
DLAQSY scales a symmetric/Hermitian matrix, using scaling factors computed by spoequ. subroutine slaqsy (uplo, n, a, lda, s, scond, amax, equed)
SLAQSY scales a symmetric/Hermitian matrix, using scaling factors computed by spoequ. subroutine zlaqhe (uplo, n, a, lda, s, scond, amax, equed)
ZLAQHE scales a Hermitian matrix. subroutine zlaqsy (uplo, n, a, lda, s, scond, amax, equed)
ZLAQSY scales a symmetric/Hermitian matrix, using scaling factors computed by spoequ.

CLAQHE scales a Hermitian matrix.

Purpose:


CLAQHE equilibrates a Hermitian matrix A using the scaling factors
in the vector S.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
Hermitian matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the Hermitian matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if EQUED = 'Y', the equilibrated matrix:
diag(S) * A * diag(S).

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(N,1).

S


S is REAL array, dimension (N)
The scale factors for A.

SCOND


SCOND is REAL
Ratio of the smallest S(i) to the largest S(i).

AMAX


AMAX is REAL
Absolute value of largest matrix entry.

EQUED


EQUED is CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).

Internal Parameters:


THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 133 of file claqhe.f.

CLAQSY scales a symmetric/Hermitian matrix, using scaling factors computed by spoequ.

Purpose:


CLAQSY equilibrates a symmetric matrix A using the scaling factors
in the vector S.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if EQUED = 'Y', the equilibrated matrix:
diag(S) * A * diag(S).

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(N,1).

S


S is REAL array, dimension (N)
The scale factors for A.

SCOND


SCOND is REAL
Ratio of the smallest S(i) to the largest S(i).

AMAX


AMAX is REAL
Absolute value of largest matrix entry.

EQUED


EQUED is CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).

Internal Parameters:


THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 133 of file claqsy.f.

DLAQSY scales a symmetric/Hermitian matrix, using scaling factors computed by spoequ.

Purpose:


DLAQSY equilibrates a symmetric matrix A using the scaling factors
in the vector S.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if EQUED = 'Y', the equilibrated matrix:
diag(S) * A * diag(S).

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(N,1).

S


S is DOUBLE PRECISION array, dimension (N)
The scale factors for A.

SCOND


SCOND is DOUBLE PRECISION
Ratio of the smallest S(i) to the largest S(i).

AMAX


AMAX is DOUBLE PRECISION
Absolute value of largest matrix entry.

EQUED


EQUED is CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).

Internal Parameters:


THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 132 of file dlaqsy.f.

SLAQSY scales a symmetric/Hermitian matrix, using scaling factors computed by spoequ.

Purpose:


SLAQSY equilibrates a symmetric matrix A using the scaling factors
in the vector S.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if EQUED = 'Y', the equilibrated matrix:
diag(S) * A * diag(S).

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(N,1).

S


S is REAL array, dimension (N)
The scale factors for A.

SCOND


SCOND is REAL
Ratio of the smallest S(i) to the largest S(i).

AMAX


AMAX is REAL
Absolute value of largest matrix entry.

EQUED


EQUED is CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).

Internal Parameters:


THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 132 of file slaqsy.f.

ZLAQHE scales a Hermitian matrix.

Purpose:


ZLAQHE equilibrates a Hermitian matrix A using the scaling factors
in the vector S.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
Hermitian matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the Hermitian matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if EQUED = 'Y', the equilibrated matrix:
diag(S) * A * diag(S).

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(N,1).

S


S is DOUBLE PRECISION array, dimension (N)
The scale factors for A.

SCOND


SCOND is DOUBLE PRECISION
Ratio of the smallest S(i) to the largest S(i).

AMAX


AMAX is DOUBLE PRECISION
Absolute value of largest matrix entry.

EQUED


EQUED is CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).

Internal Parameters:


THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 133 of file zlaqhe.f.

ZLAQSY scales a symmetric/Hermitian matrix, using scaling factors computed by spoequ.

Purpose:


ZLAQSY equilibrates a symmetric matrix A using the scaling factors
in the vector S.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if EQUED = 'Y', the equilibrated matrix:
diag(S) * A * diag(S).

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(N,1).

S


S is DOUBLE PRECISION array, dimension (N)
The scale factors for A.

SCOND


SCOND is DOUBLE PRECISION
Ratio of the smallest S(i) to the largest S(i).

AMAX


AMAX is DOUBLE PRECISION
Absolute value of largest matrix entry.

EQUED


EQUED is CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).

Internal Parameters:


THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 133 of file zlaqsy.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:36 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.