GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
laqp2(3) LAPACK laqp2(3)

laqp2 - laqp2: step of geqp3


subroutine claqp2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)
CLAQP2 computes a QR factorization with column pivoting of the matrix block. subroutine dlaqp2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)
DLAQP2 computes a QR factorization with column pivoting of the matrix block. subroutine slaqp2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)
SLAQP2 computes a QR factorization with column pivoting of the matrix block. subroutine zlaqp2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)
ZLAQP2 computes a QR factorization with column pivoting of the matrix block.

CLAQP2 computes a QR factorization with column pivoting of the matrix block.

Purpose:


CLAQP2 computes a QR factorization with column pivoting of
the block A(OFFSET+1:M,1:N).
The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

Parameters

M


M is INTEGER
The number of rows of the matrix A. M >= 0.

N


N is INTEGER
The number of columns of the matrix A. N >= 0.

OFFSET


OFFSET is INTEGER
The number of rows of the matrix A that must be pivoted
but no factorized. OFFSET >= 0.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
the triangular factor obtained; the elements in block
A(OFFSET+1:M,1:N) below the diagonal, together with the
array TAU, represent the orthogonal matrix Q as a product of
elementary reflectors. Block A(1:OFFSET,1:N) has been
accordingly pivoted, but no factorized.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

JPVT


JPVT is INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of A*P (a leading column); if JPVT(i) = 0,
the i-th column of A is a free column.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.

TAU


TAU is COMPLEX array, dimension (min(M,N))
The scalar factors of the elementary reflectors.

VN1


VN1 is REAL array, dimension (N)
The vector with the partial column norms.

VN2


VN2 is REAL array, dimension (N)
The vector with the exact column norms.

WORK


WORK is COMPLEX array, dimension (N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain X. Sun, Computer Science Dept., Duke University, USA
Partial column norm updating strategy modified on April 2011 Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.

References:

LAPACK Working Note 176

Definition at line 147 of file claqp2.f.

DLAQP2 computes a QR factorization with column pivoting of the matrix block.

Purpose:


DLAQP2 computes a QR factorization with column pivoting of
the block A(OFFSET+1:M,1:N).
The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

Parameters

M


M is INTEGER
The number of rows of the matrix A. M >= 0.

N


N is INTEGER
The number of columns of the matrix A. N >= 0.

OFFSET


OFFSET is INTEGER
The number of rows of the matrix A that must be pivoted
but no factorized. OFFSET >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
the triangular factor obtained; the elements in block
A(OFFSET+1:M,1:N) below the diagonal, together with the
array TAU, represent the orthogonal matrix Q as a product of
elementary reflectors. Block A(1:OFFSET,1:N) has been
accordingly pivoted, but no factorized.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

JPVT


JPVT is INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of A*P (a leading column); if JPVT(i) = 0,
the i-th column of A is a free column.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.

TAU


TAU is DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors.

VN1


VN1 is DOUBLE PRECISION array, dimension (N)
The vector with the partial column norms.

VN2


VN2 is DOUBLE PRECISION array, dimension (N)
The vector with the exact column norms.

WORK


WORK is DOUBLE PRECISION array, dimension (N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain X. Sun, Computer Science Dept., Duke University, USA
Partial column norm updating strategy modified on April 2011 Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.

References:

LAPACK Working Note 176

Definition at line 147 of file dlaqp2.f.

SLAQP2 computes a QR factorization with column pivoting of the matrix block.

Purpose:


SLAQP2 computes a QR factorization with column pivoting of
the block A(OFFSET+1:M,1:N).
The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

Parameters

M


M is INTEGER
The number of rows of the matrix A. M >= 0.

N


N is INTEGER
The number of columns of the matrix A. N >= 0.

OFFSET


OFFSET is INTEGER
The number of rows of the matrix A that must be pivoted
but no factorized. OFFSET >= 0.

A


A is REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
the triangular factor obtained; the elements in block
A(OFFSET+1:M,1:N) below the diagonal, together with the
array TAU, represent the orthogonal matrix Q as a product of
elementary reflectors. Block A(1:OFFSET,1:N) has been
accordingly pivoted, but no factorized.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

JPVT


JPVT is INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of A*P (a leading column); if JPVT(i) = 0,
the i-th column of A is a free column.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.

TAU


TAU is REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors.

VN1


VN1 is REAL array, dimension (N)
The vector with the partial column norms.

VN2


VN2 is REAL array, dimension (N)
The vector with the exact column norms.

WORK


WORK is REAL array, dimension (N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain X. Sun, Computer Science Dept., Duke University, USA
Partial column norm updating strategy modified on April 2011 Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.

References:

LAPACK Working Note 176

Definition at line 147 of file slaqp2.f.

ZLAQP2 computes a QR factorization with column pivoting of the matrix block.

Purpose:


ZLAQP2 computes a QR factorization with column pivoting of
the block A(OFFSET+1:M,1:N).
The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

Parameters

M


M is INTEGER
The number of rows of the matrix A. M >= 0.

N


N is INTEGER
The number of columns of the matrix A. N >= 0.

OFFSET


OFFSET is INTEGER
The number of rows of the matrix A that must be pivoted
but no factorized. OFFSET >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
the triangular factor obtained; the elements in block
A(OFFSET+1:M,1:N) below the diagonal, together with the
array TAU, represent the orthogonal matrix Q as a product of
elementary reflectors. Block A(1:OFFSET,1:N) has been
accordingly pivoted, but no factorized.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

JPVT


JPVT is INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of A*P (a leading column); if JPVT(i) = 0,
the i-th column of A is a free column.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.

TAU


TAU is COMPLEX*16 array, dimension (min(M,N))
The scalar factors of the elementary reflectors.

VN1


VN1 is DOUBLE PRECISION array, dimension (N)
The vector with the partial column norms.

VN2


VN2 is DOUBLE PRECISION array, dimension (N)
The vector with the exact column norms.

WORK


WORK is COMPLEX*16 array, dimension (N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain X. Sun, Computer Science Dept., Duke University, USA
Partial column norm updating strategy modified on April 2011 Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.

References:

LAPACK Working Note 176

Definition at line 147 of file zlaqp2.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:36 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.